
Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 1 -

Graphs

ORD

DFW

SFO

LAX

8
0
2

1843

1233

3
3
7

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 2 -

Applications

Electronic circuits

Printed circuit board

Integrated circuit

Transportation networks

Highway network

Flight network

Computer networks

Local area network

Internet

Web

Databases

Entity-relationship diagram

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 3 -

Graphs

A graph is a pair (V, E), where

V is a set of nodes, called vertices

E is a collection of pairs of vertices, called edges

Vertices and edges are positions and store elements

Example:

A vertex represents an airport and stores the three-letter airport code

An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

1843

1120
1233

3
3
7
 2555

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 4 -

Edge Types

Directed edge

ordered pair of vertices (u,v)

first vertex u is the origin

second vertex v is the destination

e.g., a flight

Undirected edge

unordered pair of vertices (u,v)

e.g., a flight route

Directed graph (Digraph)

all the edges are directed

e.g., route network

Undirected graph

all the edges are undirected

e.g., flight network

ORD PVD

flight

AA 1206

ORD PVD

849

miles

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 5 -

Vertices and Edges

End vertices (or endpoints) of
an edge

U and V are the endpoints of a

Edges incident on a vertex

a, d, and b are incident on V

Adjacent vertices

U and V are adjacent

Degree of a vertex

X has degree 5

Parallel edges

h and i are parallel edges

Self-loop

j is a self-loop

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 6 -

P1

Paths

Path

sequence of alternating
vertices and edges

begins with a vertex

ends with a vertex

each edge is preceded and
followed by its endpoints

Simple path

path such that all its vertices
and edges are distinct

Examples

P1=(V,b,X,h,Z) is a simple path

P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 7 -

Cycles

Cycle

circular sequence of alternating

vertices and edges

each edge is preceded and

followed by its endpoints

Simple cycle

cycle such that all its vertices

and edges are distinct

Examples

C1=(V,b,X,g,Y,f,W,c,U,a,) is a

simple cycle

C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)

is a cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 8 -

Subgraphs

A subgraph S of a graph

G is a graph such that

The vertices of S are a

subset of the vertices of G

The edges of S are a

subset of the edges of G

A spanning subgraph of

G is a subgraph that

contains all the vertices of
G

Subgraph

Spanning subgraph

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 9 -

Connectivity

A graph is connected if
there is a path between
every pair of vertices

A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two

connected components

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 10 -

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 11 -

Spanning Trees

A spanning tree of a connected
graph is a spanning subgraph that
is a tree

A spanning tree is not unique
unless the graph is a tree

Spanning trees have applications
to the design of communication
networks

A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 12 -

Reachability in Directed Graphs

A node w is reachable from v if there is a directed path

originating at v and terminating at w.

 E is reachable from B

B is not reachable from E

A

C

E

B

D

F

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 13 -

Properties

Notation

 |V| number of vertices

 |E| number of edges

deg(v) degree of vertex v

Property 1

v deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2

In an undirected graph with no
self-loops and no multiple
edges

 |E| |V| (|V| 1)/2

Proof: each vertex has degree
at most (|V| 1)

Example

|V| = 4

|E| = 6

deg(v) = 3

A : E V (V 1)

Q: What is the bound for a digraph?

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 14 -

Main Methods of the (Undirected) Graph ADT

Vertices and edges

are positions

store elements

Accessor methods

endVertices(e): an array of the
two endvertices of e

opposite(v, e): the vertex
opposite to v on e

areAdjacent(v, w): true iff v and
w are adjacent

replace(v, x): replace element at
vertex v with x

replace(e, x): replace element at
edge e with x

Update methods

insertVertex(o): insert a vertex
storing element o

insertEdge(v, w, o): insert an
edge (v,w) storing element o

removeVertex(v): remove vertex
v (and its incident edges)

removeEdge(e): remove edge e

Iterator methods

incidentEdges(v): edges
incident to v

vertices(): all vertices in the
graph

edges(): all edges in the graph

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 15 -

Directed Graph ADT

Additional methods:

isDirected(e): return true if e is a directed edge

insertDirectedEdge(v, w, o): insert and return a new directed
edge with origin v and destination w, storing element o

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 16 -

Running Time of Graph Algorithms

Running time often a function of both |V| and |E|.

For convenience, we sometimes drop the | . | in

asymptotic notation, e.g. O(V+E).

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 17 -

Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 18 -

Representing Graphs (Details)

Three basic methods

Edge List

Adjacency List

Adjacency Matrix

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 19 -

Edge List Structure
Vertex object

element

reference to position in vertex
sequence

Edge object

element

origin vertex object

destination vertex object

reference to position in edge
sequence

Vertex sequence

sequence of vertex objects

Edge sequence

sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 20 -

Adjacency List Structure

Edge list structure

Incidence sequence for
each vertex

sequence of references to
edge objects of incident
edges

Augmented edge objects

references to associated
positions in incidence
sequences of end vertices

u

v

w

a b

a

u v w

b

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 21 -

Adjacency Matrix Structure

Edge list structure

Augmented vertex
objects

Integer key (index)
associated with vertex

2D-array adjacency
array

Reference to edge
object for adjacent
vertices

Null for non-
nonadjacent vertices

u

v

w

a b

0 1 2

0 Ø Ø

1 Ø

2 Ø Ø a

u v w 0 1 2

b

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 22 -

Asymptotic Performance

(assuming collections V and E represented as

doubly-linked lists)

 |V| vertices, |E| edges

 no parallel edges

 no self-loops

 Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space |V|+|E| |V|+|E| |V|2

incidentEdges(v) |E| deg(v) |V|

areAdjacent (v, w) |E| min(deg(v), deg(w)) 1

insertVertex(o) 1 1 |V|2

insertEdge(v, w, o) 1 1 1

removeVertex(v) |E| deg(v) |V|2

removeEdge(e) 1 1 1

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 23 -

Graph Search Algorithms

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 24 -

Depth First Search (DFS)

Idea:

Continue searching “deeper” into the graph, until we get
stuck.

If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

Analogous to Euler tour for trees

Used to help solve many graph problems, including

Nodes that are reachable from a specific node v

Topological sorts

Detection of cycles

Extraction of strongly connected components

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 25 -

Depth-First Search

The DFS algorithm is
similar to a classic
strategy for exploring a
maze

We mark each
intersection, corner and
dead end (vertex) visited

We mark each corridor
(edge) traversed

We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 26 -

Depth-First Search

Explore every edge, starting from different vertices if necessary.

As soon as vertex discovered, explore from it.

Keep track of progress by colouring vertices:

Black: undiscovered vertices

Red: discovered, but not finished (still exploring from it)

Gray: finished (found everything reachable from it).

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 27 -

DFS Example on Undirected Graph

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge

back edge

A finished

A unexplored

unexplored edge

A being explored

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 28 -

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 29 -

DFS Algorithm Pattern

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u V [G]

color[u] = BLACK //initialize vertex

for each vertex u V [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 30 -

DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] RED

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] GRAY

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 31 -

Properties of DFS

Property 1

 DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

 The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u

D B

A

C

E

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 32 -

DFS Algorithm Pattern

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u V [G]

color[u] = BLACK //initialize vertex

for each vertex u V [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

total work

= (V)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 33 -

DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] RED

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] GRAY

total work

= |Adj[v]|
v V

= (E)

Thus running time = (V + E)

(assuming adjacency list structure)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 34 -

Variants of Depth-First Search

In addition to, or instead labeling vertices with colours, they can be

labeled with discovery and finishing times.

‘Time’ is an integer that is incremented whenever a vertex changes state

from unexplored to discovered

from discovered to finished

These discovery and finishing times can then be used to solve other

graph problems (e.g., computing strongly-connected components)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 35 -

DFS Algorithm with Discovery and Finish Times

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u V [G]

color[u] = BLACK //initialize vertex

time 0

for each vertex u V [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 36 -

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] RED

time time +1

d[u] time

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] GRAY

time time +1

f [u] time

DFS Algorithm with Discovery and Finish Times

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 37 -

Other Variants of Depth-First Search

The DFS Pattern can also be used to

Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list [u]

Label edges in the graph according to their role in the search

(see textbook)

Tree edges, traversed to an undiscovered vertex

Forward edges, traversed to a descendent vertex on the current

spanning tree

Back edges, traversed to an ancestor vertex on the current

spanning tree

Cross edges, traversed to a vertex that has already been

discovered, but is not an ancestor or a descendent

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 38 -

Example DFS on Directed Graph

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 39 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Stack

<node,# edges>

/

/

/ /

/

/

/

/

/

/

/

/

/

/

d f

Note: Stack is Last-In First-Out (LIFO)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 40 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Stack

<node,# edges>

s,0

/

1/

/ /

/

/

/

/

/

/

/

/

/

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 41 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,0

/

1/

/ 2/

/

/

/

/

/

/

/

/

/

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 42 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,0 /

1/

/ 2/

3/

/

/

/

/

/

/

/

/

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 43 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1
h,0

/

1/

/ 2/

3/

/

/

/

/

/

/

/

4/

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 44 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1
h,1
k,0

/

1/

/ 2/

3/

/

/

/

/

/

/

5/

4/

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 45 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1
h,1

Tree Edge

Path on Stack
/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 46 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1 /

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 47 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,0

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 48 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,1

Cross Edge to handled node: d[h]<d[i]

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 49 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,2

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 50 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,3
l,0

8/

1/

/ 2/

3/

/

/

/

/

/

9/

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 51 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,3
l,1

8/

1/

/ 2/

3/

/

/

/

/

/

9/

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 52 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,3

8/

1/

/ 2/

3/

/

/

/

/

/

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 53 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,0

8/

1/

/ 2/

3/

/

/

11/

/

/

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 54 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,0

8/

1/

/ 2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 55 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,1

Back Edge to node on Stack:

8/

1/

/ 2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 56 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,2

m,0

8/

1/

/ 2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 57 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,2

m,1

8/

1/

/ 2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 58 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,2

8/

1/

/ 2/

3/

/

/

11/

12/

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 59 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1

8/

1/

/ 2/

3/

/

/

11/

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 60 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

8/

1/

/ 2/

3/

/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 61 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,5
f,0

8/

1/

/ 2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 62 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,5
f,1

8/

1/

/ 2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 63 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,5

8/

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 64 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2 8/19

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 65 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,3 8/19

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Forward Edge

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 66 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1

8/19

1/

/ 2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 67 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,2

8/19

1/

/ 2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 68 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 69 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,0

8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 70 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,1

8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 71 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,2

8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 72 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,3

e,0 8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 73 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,3

e,1 8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 74 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,3

8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 75 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 76 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,3

Found

Not Handled

Stack

<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 77 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,0

8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 78 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,1

8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 79 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,2

8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 80 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,3

8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 81 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

8/19

1/

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 82 -

DFS

s

Found

Not Handled

Stack

<node,# edges>

Finished!

Tree Edges

Back Edges

a

c

h

k

f

i

l

m

j

e

b

g

d

Cross Edges

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Forward Edges

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 83 -

Classification of Edges in DFS

1. Tree edges are edges in the depth-first forest G . Edge (u, v) is a tree edge if

v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a

depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a

descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same

depth-first tree, as long as one vertex is not an ancestor of the other.

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 84 -

Classification of Edges in DFS

1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed

and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and

d[v] < d[u].

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/

19

1/

27 25

/2
6

2/

20

3/

19 17

/1
8

21

/2
4

11

/1
6 12

/1
5

13

/1
4

9/

10

5/

6

4/

7

22

/2
3

Classifying edges can help to identify

properties of the graph, e.g., a graph is
acyclic iff DFS yields no back edges.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 85 -

DFS on Undirected Graphs

In a depth-first search of an undirected graph, every

edge is either a tree edge or a back edge.

Why?

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 86 -

DFS on Undirected Graphs

Suppose that (u,v) is a forward edge or a

cross edge in a DFS of an undirected graph.

(u,v) is a forward edge or a cross edge when v

is already handled (grey) when accessed from
u.

This means that all vertices reachable from v

have been explored.

Since we are currently handling u, u must be red.

Clearly v is reachable from u.

Since the graph is undirected, u must also be

reachable from v.

Thus u must already have been handled: u must

be grey.

Contradiction!

u

v

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 87 -

Applications of Depth-First Search

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 88 -

DFS Application 1: Path Finding

DFS-Path (u,z)

Precondition: u and z are vertices in a graph

Postcondition: a path from u to z is returned, if one exists

colour[u] RED

push u onto stack

if u = z

return list of elements on stack

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Path(v,z)

colour [u] GRAY

pop u from stack

The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

We use a stack to keep track of the current path

If the destination vertex z is encountered, we return the path as the contents of
the stack

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 89 -

DFS Application 2: Cycle Finding

DFS-Cycle (u)

Precondition: u is a vertex in a graph G

Postcondition: a cycle reachable from u is returned, of one exists

colour[u] RED

push u onto stack

for each v Adj[u] //explore edge (u,v)

if color[v] = RED //back edge

return list of elements on stack

else if color[v] = BLACK

DFS-Cycle(v)

colour [u] GRAY

pop u from stack

The DFS pattern can be used to find a cycle in a graph, if one exists

We use a stack to keep track of the current path

If a back edge is encountered, we return the cycle as the contents of the stack

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 90 -

DFS Application 3. Topological Sorting

(e.g., putting tasks in linear order)

Note: This topological sorting algorithm is

different from the TopologicalSort algorithm

given on p.617 of the textbook

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 91 -

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a

digraph that has no directed cycles

A topological ordering of a digraph

is a numbering

 v1 , …, vn

 of the vertices such that for every

edge (vi , vj), we have i < j

Example: in a task scheduling

digraph, a topological ordering is a

task sequence that satisfies the
precedence constraints

Theorem

 A digraph admits a topological

ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological

ordering of G

v1

v2

v3

v4 v5

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 92 -

Topological (Linear) Order

underwear

pants

socks

shoes

underwear

pants

socks

shoes

socks

underwear

pants

shoes

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 93 -

Topological (Linear) Order

underwear

pants

socks

shoes

socks

shoes

pants

underwear

Invalid

Order

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 94 -

Note: This algorithm is different than the one

in Goodrich-Tamassia

Algorithm for Topological Sorting

Method TopologicalSort(G)

 H G // Temporary copy of G

 n G.numVertices()

 while H is not empty do

 Let v be a vertex with no outgoing edges

 Label v n

 n n - 1

 Remove v from H //as well as edges involving v

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 95 -

Linear Order

a

b h

c i

d j

e k

f l

g

Pre-Condition:

 A Directed Acyclic Graph

 (DAG)

Post-Condition:

 Find one valid linear order

Algorithm:

•Find a terminal node (sink).

•Put it last in sequence.

•Delete from graph & repeat

….. l Can we do better?

Running time: i

i=1

V

= O V
2()

O(|V|)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 96 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g
f

l

….. f

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 97 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g
l

l

When node is popped off stack, insert at front of linearly-ordered “to do” list.

….. f
Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 98 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g

l

l,f
Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 99 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e l

g,l,f
Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 100 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
l

e,g,l,f
Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 101 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

d,e,g,l,f
Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 102 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

i l

d,e,g,l,f

j

k

Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 103 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

i l

k,d,e,g,l,f

j

Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 104 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

i l

j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 105 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

i,j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 106 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

b l
c

i,j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 107 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

b l

c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 108 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

b,c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 109 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

a l
h

b,c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 110 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

a l

h,b,c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 111 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 112 -

DFS Algorithm for Topologial Sort

Makes sense. But how do we prove that it works?

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 113 -

Linear Order Found

Not Handled

Stack
Proof:

•Case 1: u goes on stack first before v.

•Because of edge,

 v goes on before u comes off

•v comes off before u comes off

•v goes after u in order.

u v
v… u…

Consider each edge

v

…

u

…

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 114 -

Linear Order Found

Not Handled

Stack
Proof:

•Case 1: u goes on stack first before v.

•Case 2: v goes on stack first before u.

 v comes off before u goes on.

•v goes after u in order.

u v
v… u…

Consider each edge

u

…
 v

…

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 115 -

Linear Order Found

Not Handled

Stack
Proof:

•Case 1: u goes on stack first before v.

•Case 2: v goes on stack first before u.

 v comes off before u goes on.

Case 3: v goes on stack first before u.

 u goes on before v comes off.

•Panic: u goes after v in order.

•Cycle means linear order

 is impossible

u v
u… v…

Consider each edge

u

…

v

…

The nodes in the stack form a path starting at s.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 116 -

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 117 -

DFS Application 3. Topological Sort

Topological-Sort(G)

Precondition: G is a graph

Postcondition: all vertices in G have been pushed onto

stack in reverse linear order

for each vertex u V [G]

color[u] = BLACK //initialize vertex

for each vertex u V [G]

if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 118 -

DFS Application 3. Topological Sort

Topological-Sort-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: u and all vertices reachable from u

have been pushed onto stack in reverse linear order

colour[u] RED

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

Topological-Sort-Visit(v)

push u onto stack

colour [u] GRAY

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 119 -

Breadth-First Search

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 120 -

Breadth-First Search

Breadth-first search (BFS) is a general technique for traversing a graph

A BFS traversal of a graph G

Visits all the vertices and edges of G

Determines whether G is connected

Computes the connected components of G

Computes a spanning forest of G

BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

BFS can be further extended to solve other graph problems

Find and report a path with the minimum number of edges between two given

vertices

Find a simple cycle, if there is one

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 121 -

BFS Algorithm Pattern

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: all vertices in G reachable from s have been visited

for each vertex u V [G]

color[u] BLACK //initialize vertex

colour[s] RED

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

colour[v] RED

Q.enqueue(v)

colour [u] GRAY

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 122 -

BFS Example

C B

A

E

D

discovery edge

cross edge

A discovered (on Queue)

A undiscovered

unexplored edge

L0

L1

F

C B

A

E

D
L1

F

C B

A

E

D

L0

L1

F

A finished

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 123 -

BFS Example (cont.)

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 124 -

BFS Example (cont.)

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 125 -

Properties

Notation

Gs: connected component of s

Property 1

 BFS(G, s) visits all the vertices and
edges of Gs

Property 2

 The discovery edges labeled by

BFS(G, s) form a spanning tree Ts of

Gs

Property 3

 For each vertex v in Li

The path of Ts from s to v has i
edges

Every path from s to v in Gs has at

least i edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 126 -

Analysis

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled three times

once as BLACK (undiscovered)

once as RED (discovered, on queue)

once as GRAY (finished)

Each edge is considered twice (for an undirected graph)

Each vertex is inserted once into a sequence Li

Thus BFS runs in O(|V|+|E|) time provided the graph is

represented by an adjacency list structure

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 127 -

Applications

BFS traversal can be specialized to solve the

following problems in O(|V|+|E|) time:

Compute the connected components of G

Compute a spanning forest of G

Find a simple cycle in G, or report that G is a forest

Given two vertices of G, find a path in G between

them with the minimum number of edges, or report

that no such path exists

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 128 -

Application: Shortest Paths on an Unweighted Graph

Goal: To recover the shortest paths from a source node

s to all other reachable nodes v in a graph.

The length of each path and the paths themselves are returned.

Notes:

There are an exponential number of possible paths

Analogous to level order traversal for graphs

This problem is harder for general graphs than trees because of

cycles!

s

?

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 129 -

Breadth-First Search

Idea: send out search ‘wave’ from s.

Keep track of progress by colouring vertices:

Undiscovered vertices are coloured black

Just discovered vertices (on the wavefront) are coloured red.

Previously discovered vertices (behind wavefront) are coloured grey.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 130 -

BFS Algorithm with Distances and Predecessors
BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null

color[u] = BLACK //initialize vertex

colour[s] RED

d[s] 0

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

colour[v] RED

d[v] d[u]+1

[v] u

Q.enqueue(v)

colour [u] GRAY

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 131 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

First-In First-Out (FIFO) queue

stores ‘just discovered’ vertices

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 132 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

s

d=0

d=0

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 133 -

BFS
Found

Not Handled

Queue

d=0
a

b

g
d

d=1

s

a

c

h

k

f

i

l

m

j

e

b

g

d

d=0
d=1

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 134 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

a

b

g
d

d=0
d=1

d=1

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 135 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

b

g
d

c

f

d=0
d=1

d=2

d=1

d=2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 136 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

b

g

c

f
m
e

d=0
d=1

d=2

d=1

d=2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 137 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue
d=0

d=1

d=2

b

j

c

f
m
e

d=1

d=2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 138 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue
d=0

d=1

d=2

j

c

f
m
e

d=1

d=2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 139 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

c

f
m
e
j

d=0
d=1

d=2

d=2

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 140 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

f
m
e
j

h

i

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 141 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

m
e
j

h

i

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 142 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

e
j

h

i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 143 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

j

h

i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 144 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

h

i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 145 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

h

d=0
d=1

d=2

d=3

i
l

d=3

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 146 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

i
l
k

d=0
d=1

d=2

d=3
d=4

d=3

d=4

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 147 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

l
k

d=0
d=1

d=2

d=3
d=4

d=3

d=4

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 148 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

k

d=0
d=1

d=2

d=3
d=4

d=3

d=4

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 149 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue

k

d=0
d=1

d=2

d=3
d=4

d=4

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 150 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Queue
d=0

d=1

d=2

d=3
d=4

d=4

d=5

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 151 -

Breadth-First Search Algorithm: Properties

Q is a FIFO queue.

Each vertex assigned finite d

value at most once.

Q contains vertices with d

values {i, …, i, i+1, …, i+1}

d values assigned are

monotonically increasing over

time.

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null

color[u] = BLACK //initialize vertex

colour[s] RED

d[s] 0

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

colour[v] RED

d[v] d[u]+1

[v] u

Q.enqueue(v)

colour [u] GRAY

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 152 -

Breadth-First-Search is Greedy

Vertices are handled:

 in order of their discovery (FIFO queue)

Smallest d values first

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 153 -

Basic Steps:

s
u

The shortest path to u

has length d

v

& there is an edge

from u to v

There is a path to v with length d+1.

Correctness

d

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 154 -

Correctness: Intuition

Vertices are discovered in order of their distance from

the source vertex s.

When we discover v, how do we know there is not a

shorter path to v?

Because if there was, we would already have discovered it!

s
u

v d

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 155 -

Inductive Proof of BFS

Suppose at step i that the set of nodes S
i
 with distance (v) d

i
 have been

discovered and their distance values d[v] have been correctly assigned.

Any node v with (v) = d

i
+1 must be adjacent to S

i
.

Any node v adjacent to S

i
 but not in S

i
 must have (v) = d

i
+1.

At step i +1, all nodes on the queue with d values of d
i
 are dequeued and processed.

Thus after step i +1, all nodes v with distance (v) d
i
+1 have been discovered

and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S

i
 with d values of d

i
.

In so doing, all nodes adjacent to S

i
 are discovered and assigned d values of d

i
+1.

Furthermore, the queue contains only nodes in S

i
 with d values of d

i
+1.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 156 -

Correctness: Formal Proof

Output:

 d[v] = distance (v) from s to v, v V .

 [v] = u such that (u,v) is last edge on shortest path from s to v .

Two-step proof:

On exit:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 157 -

u
v

s

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 158 -

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null

color[u] = BLACK //initialize vertex

colour[s] RED

d[s] 0

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

colour[v] RED

d[v] d[u]+1

[v] u

Q.enqueue(v)

colour [u] GRAY

s

u
v

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 159 -

s

u
v

x

Contradiction!

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 160 -

Correctness

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 161 -

Progress? On every iteration one vertex is processed (turns gray).

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null

color[u] = BLACK //initialize vertex

colour[s] RED

d[s] 0

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v] = BLACK

colour[v] RED

d[v] d[u]+1

[v] u

Q.enqueue(v)

colour [u] GRAY

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 162 -

The shortest path problem has the optimal substructure property:

Every subpath of a shortest path is a shortest path.

The optimal substructure property

is a hallmark of both greedy and dynamic programming algorithms.

allows us to compute both shortest path distance and the shortest paths

themselves by storing only one d value and one predecessor value per

vertex.

Optimal Substructure Property

u v s

shortest path

shortest path shortest path

How would we

prove this?

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 163 -

Recovering the Shortest Path

For each node v, store predecessor of v in (v).

s
u

v

Predecessor of v is

(v)

(v) = u.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 164 -

Recovering the Shortest Path

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 165 -

BFS Algorithm without Colours

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: predecessors [u] and shortest

distance d[u] from s to each vertex u in G has been computed

for each vertex u V [G]

d[u]

[u] null

d[s] 0

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if d[v] =

d[v] d[u]+1

[v] u

Q.enqueue(v)

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 166 -

Single-Source (Weighted) Shortest Paths

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 167 -

3

Shortest Path on Weighted Graphs

BFS finds the shortest paths from a source node s to

every vertex v in the graph.

Here, the length of a path is simply the number of edges

on the path.

But what if edges have different ‘costs’?

s

v

2
s

v

2

5
1

7

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 168 -

Weighted Graphs

In a weighted graph, each edge has an associated numerical

value, called the weight of the edge

Edge weights may represent, distances, costs, etc.

Example:

In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

1843

1120
1233

3
3
7
 2555

1
2
0
5

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 169 -

Shortest Paths

Given a weighted graph and two vertices u and v, we want to find
a path of minimum total weight between u and v.

Length of a path is the sum of the weights of its edges.

Example:

Shortest path between Providence and Honolulu

Applications

Internet packet routing

Flight reservations

Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

1843

1120
1233

3
3
7
 2555

1
2
0
5

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 170 -

Shortest Path: Notation

Input:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 171 -

Shortest Path Properties

Property 1 (Optimal Substructure):

 A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):

 There is a tree of shortest paths from a start vertex to all the other vertices

Example:

 Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

1843

1120
1233

3
3
7
 2555

1
2
0
5

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 172 -

Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 173 -

Optimal substructure: Proof

Lemma: Any subpath of a shortest path is a shortest path

Proof: Cut and paste.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 174 -

Shortest path variants

Single-source shortest-paths problem: – the

shortest path from s to each vertex v.

Single-destination shortest-paths problem: Find a

shortest path to a given destination vertex t from

each vertex v.

Single-pair shortest-path problem: Find a shortest

path from u to v for given vertices u and v.

All-pairs shortest-paths problem: Find a shortest

path from u to v for every pair of vertices u and v.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 175 -

Negative-weight edges

OK, as long as no negative-weight cycles are reachable

from the source.

If we have a negative-weight cycle, we can just keep going

around it, and get w(s, v) = for all v on the cycle.

But OK if the negative-weight cycle is not reachable from the

source.

Some algorithms work only if there are no negative-weight edges

in the graph.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 176 -

Cycles

Shortest paths can’t contain cycles:

Already ruled out negative-weight cycles.

Positive-weight: we can get a shorter path by omitting the cycle.

Zero-weight: no reason to use them assume that our solutions

won’t use them.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 177 -

Shortest-Path Example: Single-Source

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 178 -

Output of a single-source shortest-path algorithm

For each vertex v in V:

d[v] = (s, v).

Initially, d[v]= .

Reduce as algorithm progresses.

 But always maintain d[v] (s, v).

Call d[v] a shortest-path estimate.

[v] = predecessor of v on a shortest path from s.

If no predecessor, [v] = NIL.

 induces a tree — shortest-path tree.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 179 -

Initialization

All shortest-paths algorithms start with the

same initialization:

INIT-SINGLE-SOURCE(V, s)

for each v in V

do d[v]

[v] NIL

d[s] 0

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 180 -

Relaxing an edge

Can we improve shortest-path estimate for v by first going to u

and then following edge (u,v)?

RELAX(u, v, w)

 if d[v] > d[u] + w(u, v) then

 d[v] d[u] + w(u, v)

 [v] u

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 181 -

General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

2. Relax Edges

Algorithms differ in the order in which edges are

taken and how many times each edge is relaxed.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 182 -

Example 1. Single-Source Shortest Path

on a Directed Acyclic Graph

Basic Idea: topologically sort nodes and relax in linear

order.

Efficient, since [u] (shortest distance to u) has already

been computed when edge (u,v) is relaxed.

Thus we only relax each edge once, and never have to

backtrack.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 183 -

Example: Single-source shortest paths in a directed

acyclic graph (DAG)

Since graph is a DAG, we are guaranteed no

negative-weight cycles.

Thus algorithm can handle negative edges

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 184 -

Algorithm

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 185 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 186 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 187 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 188 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 189 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 190 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 191 -

Correctness: Path relaxation property

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 192 -

Correctness of DAG Shortest Path Algorithm

Because we process vertices in topologically sorted

order, edges of any path are relaxed in order of

appearance in the path.

Edges on any shortest path are relaxed in order.

By path-relaxation property, correct.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 193 -

Example 2. Single-Source Shortest Path on

a General Graph (May Contain Cycles)

This is fundamentally harder, because the first paths we

discover may not be the shortest (not monotonic).

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 194 -

Dijkstra’s algorithm (E. Dijkstra,1959)

Applies to general, weighted, directed or

undirected graph (may contain cycles).

But weights must be non-negative. (But they

can be 0!)

Essentially a weighted version of BFS.

Instead of a FIFO queue, uses a priority queue.

Keys are shortest-path weights (d[v]).

Maintain 2 sets of vertices:

S = vertices whose final shortest-path weights are

determined.

Q = priority queue = V-S.
Edsger Dijkstra

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 195 -

Dijkstra’s Algorithm: Operation

We grow a “cloud” S of vertices, beginning with s and eventually

covering all the vertices

We store with each vertex v a label d(v) representing the distance of v

from s in the subgraph consisting of the cloud S and its adjacent vertices

At each step

We add to the cloud S the vertex u outside the cloud with the smallest

distance label, d(u)

We update the labels of the vertices adjacent to u

S

7

9

11

1

4

s

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 196 -

Dijkstra’s algorithm

Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V S to add to S.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 197 -

Dijkstra’s algorithm: Analysis

Analysis:

Using minheap, queue operations takes O(logV) time

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 198 -

Example White Vertex Q =V - S

Grey Vertex = min(Q)

Black Vertex S, Off Queue

Key:

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 199 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 200 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 201 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 202 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 203 -

Example

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 204 -

Djikstra’s Algorithm Cannot Handle Negative Edges

3

2

-2

s

1

x y z

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 205 -

Correctness of Dijkstra’s algorithm

Loop invariant: d[v] = (s, v) for all v in S.

Initialization: Initially, S is empty, so trivially true.

Termination: At end, Q is empty S = V d[v] = (s, v) for all v in V.

Maintenance:

Need to show that

d[u] = (s, u) when u is added to S in each iteration.

d[u] does not change once u is added to S.

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 206 -

Correctness of Dijkstra’s Algorithm: Upper Bound Property

Upper Bound Property:

• Proof:

A valid path from s to v!

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 207 -

Correctness of Dijkstra’s Algorithm

Handled

Optimal substructure

property!

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 208 -

Correctness of Dijkstra’s Algorithm

Handled

Last Updated: 4/1/10 10:16 AM
CSE 2011

Prof. J. Elder
- 209 -

Correctness of Dijkstra’s algorithm

Loop invariant: d[v] = (s, v) for all v in S.

Maintenance:

Need to show that

d[u] = (s, u) when u is added to S in each iteration.

d[u] does not change once u is added to S.

?

