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Applications 

Electronic circuits 

Printed circuit board 

Integrated circuit 

Transportation networks 

Highway network 

Flight network 

Computer networks 

Local area network 

Internet 

Web 

Databases 

Entity-relationship diagram 
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Graphs  

A graph is a pair (V, E), where 

V is a set of nodes, called vertices 

E is a collection of pairs of vertices, called edges 

Vertices and edges are positions and store elements 

Example: 

A vertex represents an airport and stores the three-letter airport code 

An edge represents a flight route between two airports and stores the 
mileage of the route 
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Edge Types 

Directed edge 

ordered pair of vertices (u,v) 

first vertex u is the origin 

second vertex v is the destination 

e.g., a flight 

Undirected edge 

unordered pair of vertices (u,v) 

e.g., a flight route 

Directed graph (Digraph) 

all the edges are directed 

e.g., route network 

Undirected graph 

all the edges are undirected 

e.g., flight network 

ORD PVD 

flight 

AA 1206 

ORD PVD 

849 

miles 
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Vertices and Edges 

End vertices (or endpoints) of 
an edge 

U and V are the endpoints of a 

Edges incident on a vertex 

a, d, and b are incident on V 

Adjacent vertices 

U and V are adjacent 

Degree of a vertex 

X has degree 5  

Parallel edges 

h and i are parallel edges 

Self-loop 

j is a self-loop 
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P1 

Paths 

Path 

sequence of alternating 
vertices and edges  

begins with a vertex 

ends with a vertex 

each edge is preceded and 
followed by its endpoints 

Simple path 

path such that all its vertices 
and edges are distinct 

Examples 

P1=(V,b,X,h,Z) is a simple path 

P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple 

X U 
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Y 
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Cycles 

Cycle 

circular sequence of alternating 

vertices and edges  

each edge is preceded and 

followed by its endpoints 

Simple cycle 

cycle such that all its vertices 

and edges are distinct 

Examples 

C1=(V,b,X,g,Y,f,W,c,U,a, ) is a 

simple cycle 

C2=(U,c,W,e,X,g,Y,f,W,d,V,a, ) 

is a cycle that is not simple 

C1 

X U 

V 
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Z 

Y 

a 
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h C2 
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Subgraphs 

A subgraph S of a graph 

G is a graph such that  

The vertices of S are a 

subset of the vertices of G 

The edges of S are a 

subset of the edges of G 

A spanning subgraph of 

G is a subgraph that 

contains all the vertices of 
G 

Subgraph 

Spanning subgraph 
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Connectivity 

A graph is connected if 
there is a path between 
every pair of vertices 

A connected component 
of a graph G is a maximal 
connected subgraph of G 

Connected graph 

Non connected graph with two 

connected components 
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Trees 

Tree Forest Graph with Cycle 

A tree is a connected, acyclic, undirected graph. 

A forest is a set of trees (not necessarily connected) 
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Spanning Trees  

A spanning tree of a connected 
graph is a spanning subgraph that 
is a tree 

A spanning tree is not unique 
unless the graph is a tree 

Spanning trees have applications 
to the design of communication 
networks 

A spanning forest of a graph is a 
spanning subgraph that is a forest 

Graph 

Spanning tree 
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Reachability in Directed Graphs 

A node w is reachable from v if there is a directed path 

originating at v and terminating at w. 

 E is reachable from B 

B is not reachable from E 

A 

C 

E 

B 

D 

F 
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Properties 

Notation 

   |V|  number of vertices 

   |E|  number of edges 

deg(v)  degree of vertex v 

Property 1 

v deg(v) = 2|E| 

Proof: each edge is counted 
twice 

Property 2 

In an undirected graph with no 
self-loops and no multiple 
edges 

   |E|  |V| (|V|  1)/2 

Proof: each vertex has degree 
at most (|V|  1) 

Example 

|V| = 4 

|E| = 6 

deg(v) = 3 

  
A :  E V (V 1)

Q:  What is the bound for a digraph? 
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Main Methods of the (Undirected) Graph ADT 

Vertices and edges 

are positions 

store elements 

Accessor methods 

endVertices(e): an array of the 
two endvertices of e 

opposite(v, e): the vertex 
opposite to v on e 

areAdjacent(v, w): true iff v and 
w are adjacent 

replace(v, x): replace element at 
vertex v with x 

replace(e, x): replace element at 
edge e with x 

Update methods 

insertVertex(o): insert a vertex 
storing element o 

insertEdge(v, w, o): insert an 
edge (v,w) storing element o 

removeVertex(v): remove vertex 
v (and its incident edges) 

removeEdge(e): remove edge e 

Iterator methods 

incidentEdges(v): edges 
incident to v 

vertices(): all vertices in the 
graph 

edges(): all edges in the graph 
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Directed Graph ADT 

Additional methods: 

isDirected(e): return true if e is a directed edge 

insertDirectedEdge(v, w, o): insert and return a new directed 
edge with origin v and destination w, storing element o 
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Running Time of Graph Algorithms 

Running time often a function of both |V| and |E|. 

For convenience, we sometimes drop the | . | in 

asymptotic notation, e.g. O(V+E). 
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Implementing a Graph (Simplified) 

Adjacency List Adjacency Matrix 
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Representing Graphs (Details) 

Three basic methods 

Edge List 

Adjacency List 

Adjacency Matrix 
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Edge List Structure  
Vertex object 

element 

reference to position in vertex 
sequence 

Edge object 

element 

origin vertex object 

destination vertex object 

reference to position in edge 
sequence 

Vertex sequence 

sequence of vertex objects 

Edge sequence 

sequence of edge objects 

v 

u 

w 

a c 

b 

a 

z 
d 

u v w z 

b c d 



Last Updated:  4/1/10 10:16 AM 
CSE 2011 

Prof. J. Elder 
- 20 - 

Adjacency List Structure  

Edge list structure 

Incidence sequence for 
each vertex 

sequence of references to 
edge objects of incident 
edges 

Augmented edge objects 

references to associated 
positions in incidence 
sequences of end vertices 

u 

v 

w 

a b 

a 

u v w 

b 
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Adjacency Matrix Structure 

Edge list structure 

Augmented vertex 
objects 

Integer key (index) 
associated with vertex 

2D-array adjacency 
array 

Reference to edge 
object for adjacent 
vertices 

Null for non- 
nonadjacent vertices 

u 

v 

w 

a b 

0 1 2 

0 Ø Ø 

1 Ø 

2 Ø Ø a 

u v w 0 1 2 

b 
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Asymptotic Performance  

(assuming collections V and E represented as 

doubly-linked lists) 

 |V| vertices, |E| edges 

 no parallel edges 

 no self-loops 

 Bounds are “big-Oh” 

Edge 
List 

Adjacency 
List 

Adjacency 
Matrix 

Space |V|+|E| |V|+|E| |V|2 

incidentEdges(v) |E| deg(v) |V| 

areAdjacent (v, w) |E| min(deg(v), deg(w)) 1 

insertVertex(o) 1 1 |V|2 

insertEdge(v, w, o) 1 1 1 

removeVertex(v) |E| deg(v) |V|2 

removeEdge(e) 1 1 1 
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Graph Search Algorithms 
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Depth First Search (DFS) 

Idea: 

Continue searching “deeper” into the graph, until we get 
stuck.  

If all the edges leaving v have been explored we “backtrack” 
to the vertex from which v  was discovered.  

Analogous to Euler tour for trees 

Used to help solve many graph problems, including 

Nodes that are reachable from a specific node v 

Topological sorts 

Detection of cycles 

Extraction of strongly connected components 
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Depth-First Search 

The DFS algorithm is 
similar to a classic 
strategy for exploring a 
maze 

We mark each 
intersection, corner and 
dead end (vertex) visited 

We mark each corridor 
(edge ) traversed 

We keep track of the path 
back to the entrance 
(start vertex) by means of 
a rope (recursion stack) 
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Depth-First Search 

Explore every edge, starting from different vertices if necessary. 

As soon as vertex discovered, explore from it. 

Keep track of progress by colouring vertices: 

Black:  undiscovered vertices 

Red:  discovered, but not finished (still exploring from it) 

Gray: finished (found everything reachable from it). 
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DFS Example on Undirected Graph 

D B 

A 

C 

E 

D B 

A 

C 

E 

D B 

A 

C 

E 

discovery edge 

back edge 

A finished 

A unexplored 

unexplored edge 

A being explored 
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Example (cont.) 

D B 
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DFS Algorithm Pattern 

  

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u V [G] 

color[u] = BLACK //initialize vertex

for each vertex u V [G] 

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)
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DFS Algorithm Pattern 

  

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u]  RED

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

DFS-Visit(v)

colour [u] GRAY
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Properties of DFS 

Property 1 

 DFS-Visit(u) visits all the 
vertices and edges in the 
connected component of u 

Property 2 

 The discovery edges 
labeled by DFS-Visit(u) 
form a spanning tree of the 
connected component of u 

D B 

A 

C 

E 
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DFS Algorithm Pattern 

  

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u V [G] 

color[u] = BLACK //initialize vertex

for each vertex u V [G] 

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

  

total work 

=  (V )
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DFS Algorithm Pattern 

  

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u]  RED

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

DFS-Visit(v)

colour [u] GRAY

total work 

=  |Adj[v]|
v V

= (E)

Thus running time = (V + E)

(assuming adjacency list structure)
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Variants of Depth-First Search 

In addition to, or instead labeling vertices with colours, they can be 

labeled with discovery and finishing times. 

‘Time’ is an integer that is incremented whenever a vertex changes state 

from unexplored to discovered 

from discovered to finished 

These discovery and finishing times can then be used to solve other 

graph problems (e.g., computing strongly-connected components) 
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DFS Algorithm with Discovery and Finish Times 

  

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u V [G] 

color[u] = BLACK //initialize vertex

time 0

for each vertex u V [G] 

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)
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DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u]  RED

time time +1

d[u] time

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

DFS-Visit(v)

colour [u] GRAY

time time +1

f [u] time

DFS Algorithm with Discovery and Finish Times 
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Other Variants of Depth-First Search 

The DFS Pattern can also be used to  

Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list [u] 

Label edges in the graph according to their role in the search 

(see textbook) 

Tree edges, traversed to an undiscovered vertex 

Forward edges, traversed to a descendent vertex on the current 

spanning tree 

Back edges, traversed to an ancestor vertex on the current 

spanning tree 

Cross edges, traversed to a vertex that has already been 

discovered, but is not an ancestor or a descendent 
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Example DFS on Directed Graph 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Stack  

<node,# edges> 

/ 

/ 

/ / 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

d f 

Note:  Stack is Last-In First-Out (LIFO) 
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DFS 

s 

a 

c 

h 
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d 

Found 

Not Handled 

Stack  
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/ 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 

a,0 

/ 
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/ 2/ 

/ 
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/ 

/ 

/ 

/ 

/ 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 

a,1 
c,0 / 
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/ 
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/ 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 

a,1 
c,1 
h,0 

/ 

1/ 

/ 2/ 

3/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

4/ 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 

a,1 
c,1 
h,1 
k,0 

/ 

1/ 

/ 2/ 

3/ 

/ 

/ 

/ 
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/ 
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5/ 

4/ 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 

a,1 
c,1 
h,1 

Tree Edge 

Path on Stack 
/ 

1/ 

/ 2/ 

3/ 

/ 

/ 

/ 

/ 

/ 

/ 

5/6 

4/ 

/ 
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DFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 

a,1 
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/ 
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DFS 

s 

a 
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i 

l 

m 

j 
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Found 
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DFS 

s 

a 
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b 

g 

d 

s,1 

Found 

Not Handled 

Stack  

<node,# edges> 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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d 
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Found 

Not Handled 

Stack  

<node,# edges> 
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DFS 
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DFS 
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Classification of Edges in DFS 

1. Tree edges are edges in the depth-first forest G . Edge (u, v) is a tree edge if 

v  was first discovered by exploring edge (u, v). 

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a 

depth-first tree. 

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a 

descendant v in a depth-first tree. 

4. Cross edges are all other edges. They can go between vertices in the same 

depth-first tree, as long as one vertex is not an ancestor of the other. 
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Classification of Edges in DFS 

1. Tree edges:  Edge (u, v) is a tree edge if v was black when (u, v) traversed. 

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed. 

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed 

and d[v] > d[u]. 

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and 

d[v] < d[u]. 
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m 

j 
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19 
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27 25

/2
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19 17

/1
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11

/1
6 12

/1
5 

13

/1
4 

9/

10 

5/
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4/

7 

22

/2
3 

Classifying edges can help to identify  

properties of the graph, e.g., a graph is  
acyclic iff DFS yields no back edges. 
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DFS on Undirected Graphs 

In a depth-first search of an undirected graph, every 

edge is either a tree edge or a back edge. 

Why? 
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DFS on Undirected Graphs 

Suppose that (u,v) is a forward edge or a 

cross edge in a DFS of an undirected graph. 

(u,v) is a forward edge or a cross edge when v 

is already handled (grey) when accessed from 
u. 

This means that all vertices reachable from v 

have been explored.  

Since we are currently handling u, u must be red. 

Clearly v is reachable from u. 

Since the graph is undirected, u must also be 

reachable from v. 

Thus u must already have been handled:  u must 

be grey. 

Contradiction! 

u 

v 
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Applications of Depth-First Search 
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DFS Application 1:  Path Finding 

DFS-Path (u,z)

Precondition: u and z are vertices in a graph

Postcondition: a path from u to z is returned, if one exists

colour[u]  RED

push u onto stack

if u = z

return list of elements on stack

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

DFS-Path(v,z)

colour [u] GRAY

pop u from stack

The DFS pattern can be used to find a path between two given vertices u and z, 
if one exists 

We use a stack to keep track of the current path 

If the destination vertex z is encountered, we return the path as the contents of 
the stack  
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DFS Application 2:  Cycle Finding 

DFS-Cycle (u)

Precondition: u is a vertex in a graph G

Postcondition: a cycle reachable from u is returned, of one exists

colour[u]  RED

push u onto stack

for each v Adj[u] //explore edge (u,v)

if color[v] = RED //back edge

return list of elements on stack

else if color[v ] = BLACK

DFS-Cycle(v)

colour [u] GRAY

pop u from stack

The DFS pattern can be used to find a cycle in a graph, if one exists 

We use a stack to keep track of the current path 

If a back edge is encountered, we return the cycle as the contents of the stack  
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DFS Application 3. Topological Sorting  

(e.g., putting tasks in linear order) 

Note:  This topological sorting algorithm is 

different from the TopologicalSort algorithm 

given on p.617 of the textbook  
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DAGs and Topological Ordering 

A directed acyclic graph (DAG) is a 

digraph that has no directed cycles 

A topological ordering of a digraph 

is a numbering  

 v1 , …, vn  

 of the vertices such that for every 

edge (vi , vj), we have i < j 

Example: in a task scheduling 

digraph, a topological ordering is a 

task sequence that satisfies the 
precedence constraints 

Theorem 

 A digraph admits a topological 

ordering if and only if it is a DAG 

B 

A 

D 

C 

E 

DAG G 

B 

A 

D 

C 

E 

Topological 

ordering of G 

v1 

v2 

v3 

v4 v5 
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Topological (Linear) Order 

underwear 

pants 

socks 

shoes 

underwear 

pants 

socks 

shoes 

socks  

underwear 

pants 

shoes 
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Topological  (Linear) Order 

underwear 
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underwear 

Invalid 

Order 
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Note: This algorithm is different than the one 

in Goodrich-Tamassia 

Algorithm for Topological Sorting 

Method TopologicalSort(G) 

      H  G  // Temporary copy of G 

      n  G.numVertices() 

      while H is not empty do 

  Let v be a vertex with no outgoing edges 

  Label v  n 

  n  n - 1 

  Remove v from H //as well as edges involving v 
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Linear Order 

a 

b h 

c i 

d j 

e k 

f l 

g 

Pre-Condition:  

   A Directed Acyclic Graph 

     (DAG) 

Post-Condition: 

    Find one valid linear order 

Algorithm:  

•Find a terminal node (sink). 

•Put it last in sequence. 

•Delete from graph & repeat 

…..  l Can we do better? 
  

Running time: i

i=1

V

= O V
2( )

O(|V|) 
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Linear Order 

a 

b h 

c i 

d j 

e k 
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Found 

Not Handled 

Stack  

Alg: DFS 

d 
e 
g 
f 

l 

…..  f 
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Linear Order 
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b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 

d 
e 
g 
l 

l 

When node is popped off stack, insert at front of linearly-ordered “to do” list. 

…..  f 
Linear Order: 
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Linear Order 
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Found 
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Alg: DFS 

d 
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Linear Order: 
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Linear Order 
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Found 
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Stack  

Alg: DFS 
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e l 
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Linear Order: 
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Linear Order 
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Found 
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Linear Order: 
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Linear Order 

a 

b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 
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Linear Order: 
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Linear Order 
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Linear Order: 
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Linear Order 
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Linear Order: 
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Linear Order 
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Linear Order 
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Linear Order 
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Alg: DFS 

b l 
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i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 
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b h 
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Found 
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Stack  

Alg: DFS 

b l 

c,i,j,k,d,e,g,l,f Linear Order: 



Last Updated:  4/1/10 10:16 AM 
CSE 2011 

Prof. J. Elder 
- 108 - 

Linear Order 

a 

b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 

l 

b,c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 

a l 
h 

b,c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 

a l 

h,b,c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 

l 

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order: 
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DFS Algorithm for Topologial Sort   

Makes sense.  But how do we prove that it works? 
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Linear Order Found 

Not Handled 

Stack  
Proof: 

•Case 1: u goes on stack first before v. 

•Because of edge, 

    v goes on before u comes off 

•v comes off before u comes off 

•v goes after u in order.  

u v 
v… u… 

Consider each edge 

v 

…
 

u 

…
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Linear Order Found 

Not Handled 

Stack  
Proof: 

•Case 1: u goes on stack first before v. 

•Case 2: v goes on stack first before u. 

             v comes off before u goes on. 

•v goes after u in order.  

u v 
v… u… 

Consider each edge 

u 

…
 v 

…
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Linear Order Found 

Not Handled 

Stack  
Proof: 

•Case 1: u goes on stack first before v. 

•Case 2: v goes on stack first before u. 

             v comes off before u goes on. 

Case 3: v goes on stack first before u. 

             u goes on before v comes off. 

•Panic: u goes after v in order.  

•Cycle means linear order  

     is impossible  

u v 
u… v… 

Consider each edge 

u 

…
 

v 

…
 

The nodes in the stack form a path starting at s. 
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Linear Order 

a 

b h 

c i 

d j 

e k 

f 

g 

Found 

Not Handled 

Stack  

Alg: DFS 

l 

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order: 
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DFS Application 3.  Topological Sort 

  

Topological-Sort(G)

Precondition: G is a graph

Postcondition: all vertices in G have been pushed onto

stack in reverse linear order

for each vertex u V [G] 

color[u] = BLACK //initialize vertex

for each vertex u V [G] 

if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u)
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DFS Application 3.  Topological Sort 

Topological-Sort-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: u and all vertices reachable from u

have been pushed onto stack in reverse linear order

colour[u]  RED

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

Topological-Sort-Visit(v)

push u onto stack

colour [u] GRAY
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Breadth-First Search 
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Breadth-First Search 

Breadth-first search (BFS) is a general technique for traversing a graph 

A BFS traversal of a graph G  

Visits all the vertices and edges of G 

Determines whether G is connected 

Computes the connected components of G 

Computes a spanning forest of G 

BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time 

BFS can be further extended to solve other graph problems 

Find and report a path with the minimum number of edges between two given 

vertices  

Find a simple cycle, if there is one 
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BFS Algorithm Pattern 

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: all vertices in G reachable from s have been visited

for each vertex u V [G] 

color[u]  BLACK //initialize vertex

colour[s]  RED

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

colour[v] RED

Q.enqueue(v)

colour [u] GRAY
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BFS Example 

C B 

A 

E 

D 

discovery edge 

cross edge 

A discovered (on Queue) 

A undiscovered 

unexplored edge 

L0 

L1 

F 

C B 

A 

E 

D 
L1 

F 

C B 

A 

E 

D 

L0 

L1 

F 

A finished 
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BFS Example (cont.) 

C B 

A 

E 

D 

L0 

L1 

F 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 
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BFS Example (cont.) 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 
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Properties 

Notation 

Gs: connected component of s 

Property 1 

 BFS(G, s) visits all the vertices and 
edges of Gs  

Property 2 

 The discovery edges labeled by 

BFS(G, s) form a spanning tree Ts of 

Gs 

Property 3 

 For each vertex v in Li 

The path of  Ts from s to v has i 
edges  

Every path from s to v in Gs has at 

least i edges 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

F 
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Analysis 

Setting/getting a vertex/edge label takes O(1) time 

Each vertex is labeled three times 

once as BLACK (undiscovered) 

once as RED (discovered, on queue) 

once as GRAY (finished) 

Each edge is considered twice (for an undirected graph) 

Each vertex is inserted once into a sequence Li  

Thus BFS runs in O(|V|+|E|) time provided the graph is 

represented by an adjacency list structure 
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Applications 

BFS traversal can be specialized to  solve the 

following problems in O(|V|+|E|) time: 

Compute the connected components of G 

Compute a spanning forest of G 

Find a simple cycle in G, or report that G is a forest 

Given two vertices of G, find a path in G between 

them with the minimum number of edges, or report 

that no such path exists 
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Application:  Shortest Paths on an Unweighted Graph 

Goal: To recover the shortest paths from a source node 

s to all other reachable nodes v in a graph. 

The length of each path and the paths themselves are returned. 

Notes:   

There are an exponential number of possible paths 

Analogous to level order traversal for graphs 

This problem is harder for general graphs than trees because of 

cycles! 

s 

? 
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Breadth-First Search 

Idea:  send out search ‘wave’ from s. 

Keep track of progress by colouring vertices: 

Undiscovered vertices are coloured black 

Just discovered vertices (on the wavefront) are coloured red. 

Previously discovered vertices (behind wavefront) are coloured grey. 
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BFS Algorithm with Distances and Predecessors 
BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and 

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null 

color[u] = BLACK //initialize vertex

colour[s]  RED

d[s] 0 

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

colour[v] RED

d[v ] d[u]+1 

[v ] u

Q.enqueue(v)

colour [u] GRAY
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

First-In First-Out (FIFO) queue 

stores ‘just discovered’ vertices 



Last Updated:  4/1/10 10:16 AM 
CSE 2011 

Prof. J. Elder 
- 132 - 

BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

s 

d=0 

d=0 
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BFS 
Found 

Not Handled 

Queue 

d=0 
a 

b 

g 
d 

d=1 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

d=0 
d=1 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

a 

b 

g 
d 

d=0 
d=1 

d=1 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

b 

g 
d 

c 

f 

d=0 
d=1 

d=2 

d=1 

d=2 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

b 

g 

c 

f 
m 
e 

d=0 
d=1 

d=2 

d=1 

d=2 



Last Updated:  4/1/10 10:16 AM 
CSE 2011 

Prof. J. Elder 
- 137 - 

BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 
d=0 

d=1 

d=2 

b 

j 

c 

f 
m 
e 

d=1 

d=2 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 
d=0 

d=1 

d=2 

j 

c 

f 
m 
e 

d=1 

d=2 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

c 

f 
m 
e 
j 

d=0 
d=1 

d=2 

d=2 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

f 
m 
e 
j 

h 

i 

d=0 
d=1 

d=2 

d=3 

d=2 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

m 
e 
j 

h 

i 

d=0 
d=1 

d=2 

d=3 

d=2 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

e 
j 

h 

i 
l 

d=0 
d=1 

d=2 

d=3 

d=2 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

j 

h 

i 
l 

d=0 
d=1 

d=2 

d=3 

d=2 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

h 

i 
l 

d=0 
d=1 

d=2 

d=3 

d=2 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

h 

d=0 
d=1 

d=2 

d=3 

i 
l 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

i 
l 
k 

d=0 
d=1 

d=2 

d=3 
d=4 

d=3 

d=4 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

l 
k 

d=0 
d=1 

d=2 

d=3 
d=4 

d=3 

d=4 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

k 

d=0 
d=1 

d=2 

d=3 
d=4 

d=3 

d=4 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 

k 

d=0 
d=1 

d=2 

d=3 
d=4 

d=4 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 

d 

Found 

Not Handled 

Queue 
d=0 

d=1 

d=2 

d=3 
d=4 

d=4 

d=5 
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Breadth-First Search Algorithm:  Properties 

Q is a FIFO queue. 

Each vertex assigned finite d 

value at most once. 

Q contains vertices with d 

values {i, …, i, i+1, …, i+1} 

d values assigned are 

monotonically increasing over 

time. 

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and 

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null 

color[u] = BLACK //initialize vertex

colour[s]  RED

d[s] 0 

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

colour[v] RED

d[v ] d[u]+1 

[v ] u

Q.enqueue(v)

colour [u] GRAY
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Breadth-First-Search is Greedy 

Vertices are handled: 

 in order of their discovery (FIFO queue) 

Smallest d values first 
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Basic Steps: 

s 
u 

The shortest path to u 

has length d 

v 

& there is an edge  

from u to v 

There is a path to v with length d+1. 

Correctness 

d 
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Correctness:  Intuition 

Vertices are discovered in order of their distance from 

the source vertex s. 

When we discover v, how do we know there is not a 

shorter path to v? 

Because if there was, we would already have discovered it! 

s 
u 

v d 
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Inductive Proof of BFS 

Suppose at step i  that the set of nodes S
i
 with distance (v) d

i
 have been 

discovered and their distance values d[v ] have been correctly assigned.

  
Any node v  with (v) = d

i
+1 must be adjacent to S

i
.

  
Any node v  adjacent to S

i
 but not in S

i
 must have (v) = d

i
+1.

At step i +1, all nodes on the queue with d values of d
i
 are dequeued and processed.

  

Thus after step i +1, all nodes v  with distance (v) d
i
+1 have been discovered

and their distance values d[v ] have been correctly assigned.

  
Further suppose that the queue contains only nodes in S

i
 with d  values of d

i
.

  
In so doing, all nodes adjacent to S

i
 are discovered and assigned d  values of d

i
+1.   

  
Furthermore, the queue contains only nodes in S

i
 with d  values of d

i
+1.
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Correctness:  Formal Proof 

  

Output:  

  d[v] =  distance (v) from s  to v,  v V .

  [v] = u such that (u,v) is last edge on shortest path from s  to v .

Two-step proof: 

On exit: 
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u 
v 

s 
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BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and 

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null 

color[u] = BLACK //initialize vertex

colour[s]  RED

d[s] 0 

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

colour[v] RED

d[v ] d[u]+1 

[v ] u

Q.enqueue(v)

colour [u] GRAY

s 

u 
v 
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s 

u 
v 

x 

Contradiction! 
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Correctness 
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Progress? On every iteration one vertex is processed (turns gray). 

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance [u] and 

[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u V [G]

d[u]

[u] null 

color[u] = BLACK //initialize vertex

colour[s]  RED

d[s] 0 

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if color[v ] = BLACK

colour[v] RED

d[v ] d[u]+1 

[v ] u

Q.enqueue(v)

colour [u] GRAY
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The shortest path problem has the optimal substructure property: 

Every subpath of a shortest path is a shortest path. 

The optimal substructure property  

is a hallmark of both greedy and dynamic programming algorithms. 

allows us to compute both shortest path distance and the shortest paths 

themselves by storing only one d value and one predecessor value per 

vertex. 

Optimal Substructure Property 

u v s 

shortest path 

shortest path shortest path 

How would we  

prove this? 
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Recovering the Shortest Path 

For each node v, store predecessor of v in (v). 

s 
u 

v 

Predecessor of v is 

(v) 

(v) = u. 
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Recovering the Shortest Path 
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BFS Algorithm without Colours 

  

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: predecessors [u] and shortest 

distance d[u] from s to each vertex u in G has been computed

for each vertex u V [G]

d[u]

[u] null 

d[s] 0 

Q.enqueue(s)

while Q

u Q.dequeue()

for each v Adj[u] //explore edge (u,v)

if d[v ] = 

d[v ] d[u]+1 

[v ] u

Q.enqueue(v)
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Single-Source (Weighted) Shortest Paths 
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3 

Shortest Path on Weighted Graphs 

BFS finds the shortest paths from a source node s to 

every vertex v in the graph. 

Here, the length of a path is simply the number of edges 

on the path. 

But what if edges have different ‘costs’?  
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Weighted Graphs 

In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge 

Edge weights may represent, distances, costs, etc. 

Example: 

In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports 
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Shortest Paths  

Given a weighted graph and two vertices u and v, we want to find 
a path of minimum total weight between u and v. 

Length of a path is the sum of the weights of its edges. 

Example: 

Shortest path between Providence and Honolulu 

Applications 

Internet packet routing  

Flight reservations 

Driving directions 
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Shortest Path:  Notation 

Input: 
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Shortest Path Properties 

Property 1 (Optimal Substructure): 

 A subpath of a shortest path is itself a shortest path 

Property 2 (Shortest Path Tree): 

 There is a tree of shortest paths from a start vertex to all the other vertices 

Example: 

 Tree of shortest paths from Providence 
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Shortest path trees are not necessarily unique 

Single-source shortest path search induces a search tree rooted at s. 

This tree, and hence the paths themselves, are not necessarily unique. 
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Optimal substructure:  Proof 

Lemma:  Any subpath of a shortest path is a shortest path 

Proof:  Cut and paste. 
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Shortest path variants 

Single-source shortest-paths problem: – the 

shortest path from s to each vertex v.  

Single-destination shortest-paths problem: Find a 

shortest path to a given destination vertex t from 

each vertex v.  

Single-pair shortest-path problem: Find a shortest 

path from u to v for given vertices u and v.  

All-pairs shortest-paths problem: Find a shortest 

path from u to v for every pair of vertices u and v.  
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Negative-weight edges 

OK, as long as no negative-weight cycles are reachable 

from the source. 

If we have a negative-weight cycle, we can just keep going 

around it, and get w(s, v) =  for all v on the cycle. 

But OK if the negative-weight cycle is not reachable from the 

source. 

Some algorithms work only if there are no negative-weight edges 

in the graph. 
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Cycles 

Shortest paths can’t contain cycles: 

Already ruled out negative-weight cycles. 

Positive-weight:  we can get a shorter path by omitting the cycle. 

Zero-weight: no reason to use them  assume that our solutions 

won’t use them. 
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Shortest-Path Example:  Single-Source 
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Output of a single-source shortest-path algorithm 

For each vertex v in V: 

d[v] = (s, v). 

Initially, d[v]= . 

Reduce as algorithm progresses.  

 But always maintain d[v]  (s, v). 

Call d[v] a shortest-path estimate. 

[v] = predecessor of v on a shortest path from s. 

If no predecessor, [v] = NIL. 

 induces a tree — shortest-path tree. 
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Initialization 

All shortest-paths algorithms start with the 

same initialization: 

INIT-SINGLE-SOURCE(V, s) 

for each v in V 

do d[v]  

[v]  NIL 

d[s]  0 
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Relaxing an edge 

Can we improve shortest-path estimate for v by first going to u 

and then following edge (u,v)? 

RELAX(u, v, w) 

 if d[v] > d[u] + w(u, v) then  

  d[v]  d[u] + w(u, v) 

  [v]  u 
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General single-source shortest-path strategy 

1. Start by calling INIT-SINGLE-SOURCE 

2. Relax Edges 

Algorithms differ in the order in which edges are 

taken and how many times each edge is relaxed. 
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Example 1.   Single-Source Shortest Path 

on a Directed Acyclic Graph 

Basic Idea:  topologically sort nodes and relax in linear 

order. 

Efficient, since [u] (shortest distance to u)  has already 

been computed when edge (u,v) is relaxed. 

Thus we only relax each edge once, and never have to 

backtrack. 
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Example:  Single-source shortest paths in a directed 

acyclic graph (DAG) 

Since graph is a DAG, we are guaranteed no 

negative-weight cycles. 

Thus algorithm can handle negative edges 
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Algorithm 
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Example 
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Example 



Last Updated:  4/1/10 10:16 AM 
CSE 2011 

Prof. J. Elder 
- 187 - 

Example 
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Example 
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Example 
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Example 
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Correctness:  Path relaxation property  
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Correctness of DAG Shortest Path Algorithm 

Because we process vertices in topologically sorted 

order, edges of any path are relaxed in order of 

appearance in the path. 

Edges on any shortest path are relaxed in order. 

By path-relaxation property, correct. 
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Example 2.  Single-Source Shortest Path on 

a General Graph (May Contain Cycles) 

This is fundamentally harder, because the first paths we 

discover may not be the shortest (not monotonic). 
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Dijkstra’s algorithm (E. Dijkstra,1959) 

Applies to general, weighted, directed or 

undirected graph (may contain cycles). 

But weights must be non-negative. (But they 

can be 0!) 

Essentially a weighted version of BFS. 

Instead of a FIFO queue, uses a priority queue. 

Keys are shortest-path weights (d[v]). 

Maintain 2 sets of vertices: 

S = vertices whose final shortest-path weights are 

determined. 

Q = priority queue = V-S. 
Edsger Dijkstra 
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Dijkstra’s Algorithm:  Operation  

We grow a “cloud” S of vertices, beginning with s and eventually 

covering all the vertices 

We store with each vertex v a label d(v) representing the distance of v 

from s in the subgraph consisting of the cloud S and its adjacent vertices 

At each step 

We add to the cloud S the vertex u outside the cloud with the smallest 

distance label, d(u) 

We update the labels of the vertices adjacent to u  
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Dijkstra’s algorithm 

Dijkstra’s algorithm can be viewed as greedy, since it always 
chooses the “lightest” vertex in V  S to add to S. 
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Dijkstra’s algorithm:  Analysis 

Analysis: 

Using minheap, queue operations takes O(logV) time 
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Example White  Vertex Q =V - S

Grey  Vertex = min(Q)

Black  Vertex S, Off Queue

Key: 
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Example 
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Example 
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Example 
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Example 
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Example 
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Djikstra’s Algorithm Cannot Handle Negative Edges 

3 

2 

-2 

s 

1 

x y z 



Last Updated:  4/1/10 10:16 AM 
CSE 2011 

Prof. J. Elder 
- 205 - 

Correctness of Dijkstra’s algorithm 

Loop invariant: d[v] = (s, v) for all v in S. 

Initialization: Initially, S is empty, so trivially true. 

Termination: At end, Q is empty S = V  d[v] = (s, v) for all v in V. 

Maintenance:  

Need to show that  

d[u] = (s, u) when u is added to S in each iteration. 

d[u] does not change once u is added to S. 
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Correctness of Dijkstra’s Algorithm:  Upper Bound Property 

Upper Bound Property: 

• Proof: 

A valid path from s to v! 
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Correctness of Dijkstra’s Algorithm 

Handled 

Optimal substructure 

property! 
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Correctness of Dijkstra’s Algorithm 

Handled 
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Correctness of Dijkstra’s algorithm 

Loop invariant: d[v] = (s, v) for all v in S. 

Maintenance:  

Need to show that  

d[u] = (s, u) when u is added to S in each iteration. 

d[u] does not change once u is added to S. 

 
? 


