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Applications

» Electronic circuits
O Printed circuit board
O Integrated circuit
» Transportation networks
O Highway network
O Flight network
» Computer networks
U Local area network

U Internet
O Web

» Databases
O Entity-relationship diagram
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Graphs

» A graphis a pair (V, E), where
O V is a set of nodes, called vertices
O E is a collection of pairs of vertices, called edges
O Vertices and edges are positions and store elements

» Example:

O A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the
mileage of the route
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Edge Types

» Directed edge

U ordered pair of vertices (u,v)

O first vertex u is the origin

[ second vertex v is the destination
O e.g., aflight

» Undirected edge

L unordered pair of vertices (u,v)
U e.g., aflight route

» Directed graph (Digraph)

O all the edges are directed
O e.g., route network

» Undirected graph
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O all the edges are undirected
O e.qg., flight network
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Vertices and Edges

» End vertices (or endpoints) of
an edge

0 U and V are the endpoints of a
» Edges incident on a vertex

O a, d, and b are incident on V
» Adjacent vertices

0 U and V are adjacent

» Degree of a vertex
0 X has degree 5

> Parallel edges

O h and i are parallel edges

» Self-loop
O jis a self-loop
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Paths

> Path

[ sequence of alternating
vertices and edges

U begins with a vertex
L ends with a vertex

U each edge is preceded and
followed by its endpoints

» Simple path

U path such that all its vertices
and edges are distinct

» Examples
d P,=(V,b,X,h,Z) is a simple path

a P,=(U,c,W,e,X,0,Y,fW.,d,V) is a
path that is not simple
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Cycles

» Cycle

U circular sequence of alternating
vertices and edges

[ each edge is preceded and
followed by its endpoints

» Simple cycle

U cycle such that all its vertices
and edges are distinct

» Examples

a C=(V,b,X,g9,Y,f,W,c,U,a,«)is a
simple cycle

a C,=(U,c,W,e,X,0,Y,fW,d,V,a,+«)
IS a cycle that is not simple
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Subgraphs

» A subgraph S of a graph
G Is a graph such that

] The vertices of S are a
subset of the vertices of G

O The edges of S are a
subset of the edges of G

» A spanning subgraph of
G Is a subgraph that
contains all the vertices of
G
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Connectivity

» A graph is connected if
there is a path between
every pair of vertices

» A connected component
of a graph G is a maximal

connected subgraph of G Connected graph

O

Non connected graph with two
connected components

CSE 2011
UYNQBSKE ' Prof. J. Elder -9- Last Updated: 4/1/10 10:16 AM




rees

OSSN SR

Tree Forest Graph with Cycle

A tree iIs a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)
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Spanning Trees

» A spanning tree of a connected
graph is a spanning subgraph that
IS a tree

» A spanning tree is not unique
unless the graph is a tree

» Spanning trees have applications
to the design of communication
networks Graph

» A spanning forest of a graph is a
spanning subgraph that is a forest

Spanning tree
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Reachabillity in Directed Graphs
» A node w is reachable from v if there is a directed path
originating at v and terminating at w.

 E is reachable from B

[ B is not reachable from E
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Properties

Property 1 Notation
Y. deg(v) =2|E| V| number of vertices
Proof: each edge is counted [E|  number of edges
twice deg(v) degree of vertex v
Property 2
In an undirected graph with no Example
self-loops and no multiple . |V|=4
edges . |E|=6
[E| <[V] (V|- 1)/2 = deg(v) =3

Proof: each vertex has degree
at most (|V|-1)

Q: What is the bound for a digraph?
A: JE[<I(v[-2
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Main Methods of the (Undirected) Graph ADT

» Vertices and edges » Update methods

] are positions d insertVertex(0): insert a vertex

storing element o
[ store elements J

d insertEdge(v, w, 0): insert an

» Accessor methods edge (v,w) storing element o
 endVertices(e): an array of the O removeVertex(v): remove vertex
two endvertices of e v (and its incident edges)
J opposite(v, e): the vertex [ removeEdge(e): remove edge e

opposite to v on e

0 areAdjacent(v, w): true iff v and > Iterator methods

w are adjacent O incidentEdges(v): edges
_ incident to v
O replace(v, X): replace element at _ _ _
vertex v with X  vertices(): all vertices in the
U replace(e, x): replace element at St
edge e with x [ edges(): all edges in the graph
YORK ' CSE 2011 -14 - Last Updated: 4/1/10 10:16 AM
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Directed Graph AD

» Additional methods:

U isDirected(e): return true if e is a directed edge

4 insertDirectedEdge(v, w, 0): insert and return a new directed
edge with origin v and destination w, storing element o
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Running Time of Graph Algorithms

» Running time often a function of both |V| and |E]|.

» For convenience, we sometimes drop the | . | in
asymptotic notation, e.g. O(V+E).
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Implementing a Graph (Simplified)
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Adjacency List

Space complexity:

O(V +E)
Time to find all neighbours of vertexu : @(degree(u))

O(degree(u))
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Representing Graphs (Detalils)

» Three basic methods
O Edge List
[ Adjacency List
O Adjacency Matrix
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Edge List Structure

» Vertex object
O element

[ reference to position in vertex
sequence

» Edge object b d

] element

O origin vertex object

w K
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[ destination vertex object R R Q\i
H reference to position in edge I
sequence Ty

» Vertex seguence
[ sequence of vertex objects

» Edge sequence

O sequence of edge objects




Adjacency List Structure

» Edge list structure

» Incidence sequence for
each vertex

 sequence of references to
edge objects of incident
edges

» Augmented edge objects

O references to associated
positions in incidence
sequences of end vertices
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Adjacency Matrix Structure

» Edge list structure

» Augmented vertex a b
objects m/ﬂ\m

O Integer key (index)

associated with vertex

. (D
» 2D-array adjacency Q
array T
¢y

U Reference to edge
object for adjacent

vertices
1 2
O Null for non- \ 7
nonadjacent vertices
@ | «
\\@/'
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Asymptotic Performance
(assuming collections V and E represented as

UNIVERSITE

Prof. J. Elder

doubly-linked lists)
@ |V| vertices, |E| edges
# no parallel edges Edge Adjacency Adjacency
# no self-loops List List Matrix
# Bounds are “big-Oh”

Space IV|+|E] IV|+|E] IV|?
IncidentEdges(v) E deg(v) V|
areAdjacent (v, w) E min(deg(v), deg(w)) 1
iInsertVertex(o) 1 1 IV|?
Insertedge(v, w, 0) 1 1 1
removeVertex(v) |E| deg(v) IV|?
removeEdge(e) 1 1 1
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Graph Search Algorithms
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Depth First Search (DFS)

> ldea:

[ Continue searching “deeper” into the graph, until we get
stuck.

O If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

L Analogous to Euler tour for trees

» Used to help solve many graph problems, including
J Nodes that are reachable from a specific node v
(] Topological sorts
O Detection of cycles

[ Extraction of strongly connected components
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Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

J We mark each
Intersection, corner and
dead end (vertex) visited

L We mark each corridor
(edge ) traversed

J We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)
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Depth-First Search

Input: Graph 6 =(V ,E) (directed or undirected)

» EXplore every edge, starting from different vertices if necessary.
» As soon as vertex discovered, explore from it.

» Keep track of progress by colouring vertices:
O Black: undiscovered vertices
O Red: discovered, but not finished (still exploring from it)

O Gray: finished (found everything reachable from it).

CSE 2011
YORK ' -26 - Last Updated: 4/1/10 10:16 AM
““““““““ ¢ Prof. J. Elder

lllllllllll




DFS Example on Undirected Graph
0 unexplored

0 being explored

Q finished

—  unexplored edge

—p discovery edge

- — = » back edge
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Example (cont.)
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DFS Algorithm Pattern

DFS(G)
Precondition: G Is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV[G]
color[u] = BLACK //initialize vertex
for each vertex u eV[G]
If color[u] = BLACK //as yet unexplored
DFS-Visit(u)

i
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u Is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] « RED
for each v € Adj[u] //explore edge (u,Vv)
If color[v] = BLACK

DFS-Visit(v) /\

colour[u] « GRAY
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Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u
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DFS Algorithm Pattern

DFS(G)
Precondition: G Is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV|[G] N
color[u] = BLACK //initialize vertex \ total work
for each vertex u e V[G] ) = 0(V)
If color[u] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u Is undiscovered

Postcondition: all vertices reachable from u have been processed
colourfu] « RED

for each v € Adj[u] //explore edge (u,v) )
if color[v] = BLACK | total W:;‘f ;
DFS-Visit(v) = 21 Adjlv11=6(E)

-

/
Thus running time = 6(V + E) \
(assuming adjacency list structure)

colour[u] « GRAY
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Variants of Depth-First Search

» In addition to, or instead labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state
O from unexplored to discovered

O from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph 6 =(V,E) (directed or undirected)

Output: 2 timestamps on each vertex:

d[v] = discovery time.
f[v]= finishing time. 1<d[v]<flv]<2 | V |

CSE 2011
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DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV[G]
color[u] = BLACK //initialize vertex
time <0
for each vertex u eV[G]
If color[u] = BLACK //as yet unexplored
DFS-Visit(u) ? .

\
S
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DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u Is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
time < time +1
d[u] < time
for each v € Adj[u] //explore edge (u,Vv)
if colorfv] = BLACK /\\

DFS-Visit(v)
colour[u] « GRAY
time « time +1
f[u] < time
YORKJ | csE2ou -36- Last Updated: 4/1/10 10:16 AM
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Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 1T[u]

] Label edges in the graph according to their role in the search
(see textbook)
<> , traversed to an undiscovered vertex

<> traversed to a descendent vertex on the current
spanning tree

<-Back edges, traversed to an ancestor vertex on the current
spanning tree

<-Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent
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Example DFS on Directed Graph
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Found
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<node,# edges>
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DFS Found
Not Handled

Stack
<node,# edges>
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DFS Found
Not Handled

S [ U Stack
<node,# edges>

/
C
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/
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DFS Found
Not Handled

Stack
<node,# edges>
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DES Found
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DFS Found
Not Handled

Stack
<node,# edges>
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DFS Found
Not Handled

Stack
<node,# edges>
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DFS Found
Not Handled
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<node,# edges>
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DES Found
Cross Edge to handled node: d[h]d[i] Not Handled
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DFS Found
Not Handled
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DFS Found
Not Handled
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DFS Found
Not Handled
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DFS Found
Not Handled
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Forward Edge

DES
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Classification of Edges In DFS

1. Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a
depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

l/2

2/2 \5/2
n ® [22/23
. I e
3/1
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Classification of Edges In DFS

1. Treeedges: Edge (u, v)isaltree edge if vwas black when (u, v) traversed.
2. Back edges: (u,Vv)is aback edge if vwas red when (u, v) traversed.

3. Forward edges: (u, v) isaforward edge if vwas gray when (u, v) traversed
and d[v] > d[ul].

4. Cross edges (u,v) iIsacross edge if vwas gray when (u, v) traversed and

d[v] < d[u].
Classifying edges can help to identify a
properties of the graph, e.g., a graph is @ 7 5]
acyclic iff DFS yields no back edges. /p’)g
O\ -2+ / 6 e@
'3 - /2
19\ 17 ‘ 3
gy 2

L — B1Y; /1
HAVANDL
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DFS on Undirected Graphs

» In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

» Why?
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DFS on Undirected Graphs

» Suppose that (u,v) is aforward edge or a
cross edge in a DFS of an undirected graph.

» (u,v)isaforward edge or across edge when v .

Is already handled (grey) when accessed from
u.

» This means that all vertices reachable from v
have been explored.

» Since we are currently handling u, u must be red. /\v
» Clearly v is reachable from u.

» Since the graph is undirected, u must also be . *
reachable from v.

» Thus u must already have been handled: u must
be grey.

» Contradiction!
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Applications of Depth-First Search
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UYNOEBSKE ' Prof. J. Elder - 87 - Last Updated: 4/1/10 10:16 AM



DFS Application 1: Path Finding

» The DFS pattern can be used to find a path between two given vertices u and z,
If one exists

» We use a stack to keep track of the current path

> If the destination vertex z is encountered, we return the path as the contents of
the stack

DFS-Path (u,z)
Precondition: u and z are vertices in a graph
Postcondition: a path from u to z is returned, if one exists
colourfu] « RED
push u onto stack
fu=z
return list of elements on stack
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
DFS-Path(v,z)
colour[u] <« GRAY
pop u from stack
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DFS Application 2: Cycle Finding

» The DFS pattern can be used to find a cycle in a graph, if one exists
» We use a stack to keep track of the current path

» If a back edge is encountered, we return the cycle as the contents of the stack

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: a cycle reachable from u is returned, of one exists
colour[u] « RED
push u onto stack
for each v € Adj[u] //explore edge (u,v)
If color[v] = RED //back edge
return list of elements on stack
else if color[v] = BLACK
DFS-Cycle(v)
colour[u] <« GRAY
pop u from stack

CSE 2011
YORK ' -89 - Last Updated: 4/1/10 10:16 AM
““““““““ ¢ Prof. J. Elder

lllllllllll




DFS Application 3. Topological Sorting
(e.g., putting tasks in linear order)

Note: This topological sorting algorithm is
different from the TopologicalSort algorithm
given on p.617 of the textbook
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DAGs and Topological Ordering

» A directed acyclic graph (DAG) is a
digraph that has no directed cycles

» A topological ordering of a digraph Q G
IS @ numbering

YA e

of the vertices such that for every
edge (v;, vj), we have i <] e

» Example: in a task scheduling e DAG G
digraph, a topological ordering is a
task sequence that satisfies the v, Ve

precedence constraints
Theorem V2

A digraph admits a topological
ordering if and only if it is a DAG

Topological
ordering of G
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Topological (Linear) Order
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opological (Linear) Order

underwear. .socks
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Algorithm for Topological Sorting

» Note: This algorithm iIs different than the one
In Goodrich-Tamassia

Method TopologicalSort(G)

H € G // Temporary copy of G

n € G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v € n
n€&n-1
Remove v from H

CSE 2011
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Linear Order

a Pre-Condition:
A Directed Acyclic Graph
h

(DAG)

I| Post-Condition:
%. Find one valid linear order

J

+—9

@ o O T

Put It last in sequence.
eDelete from graph & repea
f e ol Jrap P

k Algorithm:
/ *Find a terminal node (sink).
; o(V)
M ,
Running time: ) i :O(|\/| )

| o | Can we do better?
YORK E 2011
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Linear Order

Alg: DFS
/a\
h

%i
1 9

<

Found
Not Handled
Stack

o Db —

When node is popped off stack, insert at front of linearly-ordered “to do” list.

Linear Order:
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Linear Order
Alg: DFS Found
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Linear Order
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Linear Order
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Linear Order
Alg: DFS ~ound
Not Handled

a
/\ Stack
h

!
!
!

d | |
e /k
> \ !
J
f I i
Linear Order:
YORK [ csezou oo 8O psates a0 1016 A




Linear Order
Alg: DFS ~ound
Not Handled

2 Stack
I/\I“

! |

d J
e 1} /lk
f \| ]

Linear Order: k,d,e,g,l,f
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Linear Order
Alg: DFS ~ound
Not Handled

2 Stack
I/\I“

! |

d J
'l 3
> <
f |
Linear order: J,K,d,e,q,l,f
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Linear Order
Alg: DFS ~ound
Not Handled

/a\ Stack
! T

! |

d J
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Linear Order
Alg: DFS ~ound
Not Handled

2 Stack
I/\I“

! |

d J
'] 3
> <
f |
Linear order: 1,},K,d,e,g,l.f
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Linear Order

_ Found
a Alg: DFS Not Handled
/\ Stack
b h
C 1 Ii
. |
J
e 1 1k
> <
f I .

Linear Order: C,i,j,k,d,e,g,l,f
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Linear Order

_ Found
a Alg: DFS Not Handled
/\ Stack
b h
C 1 Ii
. |
J
e 1 1k
> <
f I

Linear Order: b,c,i,j,k,d,e,g,l,f
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Linear Order

_ Found
a Alg: DFS Not Handled
/\ Stack
b h
C 1 Ii
. |
J
e 1 1k
/
9
> \ h
f I 3

Linear Order: b,c,i,j,k,d,e,g,l,f
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Linear Order

_ Found
a Alg: DFS Not Handled
/\ Stack
b h
C 1 1i
] } l.
J
e 1 1k
> <
f I 3

Linear Order: h,b,c,i,j,k,d,e,g,l,f
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Linear Order

_ Found
a Alg: DFS Not Handled

/\ Stack
b h
C 1 1i
. |
| 1‘

e

Linear Order: a,h,b,C,i,j,k,d,e,g,I,f Donel
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DFS Algorithm for Topologial Sort

» Makes sense. But how do we prove that it works?
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Linear Order

Proof: Consider each edge

*Case 1: u goes on stack first before v.

*Because of edge,

Vv goes on before u comes off
v comes off before u comes off
v goes after u in order. ©

Ue——eo V
YORK [JJ cse2on s, U V...
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Linear Order

Found
Proof: Consider each edge Not Handled
Case 1: u goes on stack first before v. Stack
«Case 2: v goes on stack first before u.
v comes off before u goes on.
v goes after u in order. ©

Ue——e V

CSE 2011
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Linear Order R

Proof: Consider each edge Not Handled
Case 1: u goes on stack first before v. Stack
«Case 2: v goes on stack first before u.
v comes off before u goes on.
Case 3: v goes on stack first before u.
u goes on before v comes off.
Panic: u goes after v in order. ®

«Cycle means linear order < u>
is impossible © V

The nodes In the stack form a path starting at s.
Ue—e Vv
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Linear Order

_ Found
a Alg: DFS Not Handled

/ \ Stack
h

b
C 1 1|
| |

J
e 1 1k

> < Analysis: ©O(V+E)
f |
Linear Order: @,N,b,c,1,],k,d,e,g,l,f Done!
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DFS Application 3. Topological Sort

Topological-Sort(G)
Precondition: G is a graph
Postcondition: all vertices in G have been pushed onto
stack in reverse linear order
for each vertex u eV[G]
color[u] = BLACK //initialize vertex
for each vertex u eV[G]
If color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u) .
‘\#‘ R \
AR
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DFS Application 3. Topological Sort

Topological-Sort-Visit (u)
Precondition: vertex u Is undiscovered
Postcondition: u and all vertices reachable from u
nave been pushed onto stack in reverse linear order

colourfu] « RED

for each v € Adj[u] //explore edge (u,v)

If color[v] = BLACK
Topological-Sort-Visit(v)
push u onto stack
colour[u] < GRAY
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Breadth-First Search
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Breadth-First Search

» Breadth-first search (BFS) is a general technique for traversing a graph
» A BFS traversal of a graph G

O Visits all the vertices and edges of G

O Determines whether G is connected

O Computes the connected components of G
 Computes a spanning forest of G

» BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

» BFS can be further extended to solve other graph problems

O Find and report a path with the minimum number of edges between two given
vertices

O Find a simple cycle, if there is one

CSE 2011
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BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u eV[G]
colorfu] « BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
If color[v] = BLACK
colour[v] < RED
Q.engqueue(v)
colour[u] <« GRAY
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— discovery edge

— — —» Cross edge

ST

BFS Example

undiscovered
discovered (on Queue)

finished
unexplorededge @ ---5F
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BFS Example (cont.)
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BFS Example (cont.)
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Properties

Notation
G,: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of G,

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree T, of
GS

Property 3
For each vertex v in L;

d The path of T, fromstovhas i L,
edges

4 Every path from s to v in G, has at
least i edges

_—————
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Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
[ once as BLACK (undiscovered)
[ once as RED (discovered, on queue)
[ once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex Is inserted once into a sequence L,

» Thus BFS runs in O(|V|+|E|) time provided the graph is
represented by an adjacency list structure
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Applications

» BFS traversal can be specialized to solve the
following problems in O(|V|+|E|) time:

JCompute the connected components of G
dCompute a spanning forest of G
Find a simple cycle in G, or report that G Is a forest

L Given two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists
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Application: Shortest Paths on an Unweighted Graph

» Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.

O The length of each path and the paths themselves are returned.

» Notes:
O There are an exponential number of possible paths
O Analogous to level order traversal for graphs

[ This problem is harder for general graphs than trees because of
cycles!
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Breadth-First Search

Input: Graph & =(V,E) (directed or undirected) and source vertex sel/.

Output:
d[v]= shortest path distance é(s,v) from s to v, VveVl.
r[v]=u such that (u,v) is last edge on a shortest path from s to v.

> ldea: send out search ‘wave’ from s.

» Keep track of progress by colouring vertices:
O Undiscovered vertices are coloured black
O Just discovered vertices (on the wavefront) are coloured red.

d vertices (behind wavefront) are coloured
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YOR ' - 129 - Last Updated: 4/1/10 10:16 AM
“““““““ : Prof. J. Elder

UNIVER SITY



BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex ueV|[G]
d[u] <= o
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] « RED
d[s]« O
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] < RED

dlv] < d[u]+1
n[v]«u
Q.enqueue(v)
colour[u] « GRAY
E 2011
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Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance é[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex ueV|[G]

i{ﬂ}::u” » Qis a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex aSSlgned finite d
colour[s] < RED value at most once.
d[s]« O
Q.enqueue(s) » Q contains vertices with d
while Q # @ values {i, ..., I, I+1, ..., i+1}

u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

» d values assigned are
monotonically increasing over

colour[v] <« RED time.
dlv] < d[u]+1
w[v]«u
Q.enqueue(v)
colour[u] « GRAY
UYNORK ' CSE 201 - 151 - Last Updated: 4/1/10 10:16 AM
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Breadth-First-Search is Greedy

» Vertices are handled:
O in order of their discovery (FIFO queue)

] Smallest d values first

CSE 2011
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Correctness

Basic Steps:

\d/\V.V
The shortest path to u & there Is an edge
has length d fromutov

There Is a path to v with length d+1.
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Correctness: Intuition

» Vertices are discovered in order of their distance from
the source vertex s.

» When we discover v, how do we know there Is not a
shorter path to v?

] Because if there was, we would already have discovered it!

o~
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Inductive Proof of BFS

Suppose at step i that the set of nodes S, with distance 6(v) <d. have been
discovered and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S, with d values of d..

Any node v with 6(v) =d. +1 must be adjacentto S..

Any node v adjacentto S, but notin S, must have o(v)=d. +1.

At step i +1, all nodes on the queue with d values of d. are dequeued and processed.

In so doing, all nodes adjacent to S are discovered and assigned d values of d. +1.

Thus after step i +1, all nodes v with distance o6(v) <d. +1 have been discovered
and their distance values d[v] have been correctly assigned.

Furthermore, the queue contains only nodes in S, with d values of d. +1.

CSE 2011
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Correctness: Formal Proof

Input: Graph & =(V,E) (directed or undirected) and source vertex sel/.

Output:
d[v]= distance 6(v) from s to v, Vv eV.
n[v] = u such that (u,v) is last edge on shortest path from s to v.

Two-step proof:

On exit:
1. d[v]=o6(s,v)VveV

2. d[v]»o(s,v)VveV

CSE 2011
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Claim 1. d is never too small: d[v]=9d(s,v)VveV
Proof: There exists a path from s to v of length d[v].

By Induction:
Suppose it is true for all vertices thus far discovered (red and grey).

v is discovered from some adjacent vertex u being handled.

— d[v]=d[u] +1
>0(s,u)+1 3
\/
>6(s,v) \/\V
since each vertex v is assigned a d value exactly once,
it follows that on exit, d[v] > d(s,v)Vve V.
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Claim 1. d is never too small: d[v]=od(s,v)VveV
BFS(G,s) Proof: There exists a path from s to v of length d|v].

Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance é[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u eV[G]
d[u] = e
r[u] < null S

color[u] = BLACK //initialize vertex \/
colour[s] « RED U

d[s]«< O
Q.enqueue(s)
while Q  © — <LI>: d[v] = &(s,v )V 'discovered' (red or grey) ve V
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

colour[v] <~ RED
dv] - dul+l D> §(s,u)+1 2 5(s,v)
vl <u
Q.enqueue(v)
colour[u] « GRAY
YORK ' CSE 2011 - 158 - Last Updated: 4/1/10 10:16 AM
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Claim 2. d is never too big: d[v]<o(s,v)VveV

Proof by contradiction:
Suppose one or more vertices receive a d value greater than 9.
Let v be the vertex with minimum 6(s,v) that receives such a d value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let u be V's predecessor on a shortest path from s to v.

Th _ B
. 5(s,v) < d[v] APy=ellr=1
— o(s,v)-1<d[v]-1 S
— d[u] < d[x] \Y,

d[u]=o(s,v)-1

Recall: vertices are dequeued in increasing order of d value.

— u was dequeued before x.
— d[v]=d[u]+1=46(s,v) Contradiction!
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Correctness

Claim 1. d is never too small: d[v]=o(s,v)VveV

Claim 2. d is never too big: d[v]<o(s,v)VveV

= d is just right: d[v]=0d(s,v)VveV
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Progress? > On every iteration one vertex is processed (turns gray). —

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance é[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex ueV|[G]
d[u] = e
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] « RED
d[s]«0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] < RED

dlv] «d[u]+1
w[v]«<u
Q.enqueue(v)
colour[u] « GRAY <
CSE 2011
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Optimal Substructure Property

» The shortest path problem has the optimal substructure property:

O Every subpath of a shortest path is a shortest path.

shortest path
NG

How would we S
prove this?

- AN J

shortest path shortest path
» The optimal substructure property
U is a hallmark of both greedy and dynamic programming algorithms.

O allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per
vertex.
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Recovering the Shortest Path

For each node v, store predecessor of v In (V).

g = — n(n(n(n( v))))

P (v

Predecessor of vis (V) =U. & p (V)
/

|
1
J ¥
CSE 2011
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Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph &
Postcondition: the vertices on the shortest path from s to v have been printed in order
if v =5 then

s = TR V))))
else if 7[v]=NIL then

print "no path from" s "to" v "exists"

Is
} T’RINT-PATH(G, s, w[v]) R(E(E(V)))
print v ﬂi(ﬂi( V))
(V)
YORKJ | csE2ou - 164 - as¥Updated: 4/1/10 10:16 AM
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BFS Algorithm without Colours
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors r[u] and shortest
distance d[u] from s to each vertex u in G has been computed
for each vertex u e V[G]
d[u] ¢« oo
r[u] < null
d[s]< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
Cf d[v] = o
dv]<d|u]+1
n[v]<u
Q.enqueue(v)
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Single-Source (Weighted) Shortest Paths
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Shortest Path on Weighted Graphs

» BFS finds the shortest paths from a source node s to
every vertex v in the graph.

» Here, the length of a path is simply the number of edges
on the path.

» But what if edges have different ‘costs’?

e ﬁ/
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Weighted Graphs

» In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

» Edge weights may represent, distances, costs, etc.

» Example:

O In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

CSE 2011
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Shortest Paths

» Given a weighted graph and two vertices u and v, we want to find
a path of minimum total weight between u and v.

U Length of a path is the sum of the weights of its edges.
» Example:

U Shortest path between Providence and Honolulu
» Applications

O Internet packet routing

O Flight reservations

O Driving directions

YORK ' CSE 2011
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Shortest Path: Notation

> |Input:

Directed Graph G = (V,E)
Edge weights w . E - R

k
Weight of path p =<v,v,,...v, > = ZW(V,-_l,V/)
=1

Shortest-path weight from v to v :

6(u.v)= {min{w(p): = e - v} ifJapathu— - —>v,

o otherwise.

Shortest path from u to v is any path p such that w(p) =6(u,v).
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Shortest Path Properties

Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):
There is a tree of shortest paths from a start vertex to all the other vertices

Example:
Tree of shortest paths from Providence

CSE 2011
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Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

YORK ' CSE 2011
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Optimal substructure: Proof

» Lemma: Any subpath of a shortest path is a shortest path

» Proof: Cut and paste.

Suppose this path p is a shortest path from v to v.

Then 6(u,v) =w(p)=w(p,)+w(p,)+w(p,)
Now suppose there exists a shorter path x — . Y.

Then w(p,,) <w(p,,).

Construct p”

Then w(p)=w(p,)+w(py)+w(p,) < wip,)+w(p,)+w(p,) =w(p).

So p wasn't a shortest path after all!
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Shortest path variants

» Single-source shortest-paths problem: —the
shortest path from s to each vertex v.

» Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

» Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

» All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

CSE 2011
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Negative-weight edges

» OK, as long as no negative-weight cycles are reachable
from the source.

O If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = — for all v on the cycle.

O But OK if the negative-weight cycle is not reachable from the
source.

J Some algorithms work only if there are no negative-weight edges
in the graph.
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Cycles

» Shortest paths can’t contain cycles:
1 Already ruled out negative-weight cycles.
] Positive-weight: we can get a shorter path by omitting the cycle.

[ Zero-weight: no reason to use them - assume that our solutions
won’t use them.
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Shortest-Path Example: Single-Source
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Output of a single-source shortest-path algorithm

» For each vertex v in V:

dd[v] = o(s, V).
< Initially, d[v]=.

<>Reduce as algorithm progresses.
But always maintain d[v] = d(s, V).

<-Call d[v] a shortest-path estimate.

T1r[v] = predecessor of v on a shortest path from s.
<If no predecessor, 1r[v] = NIL.

<-1r Induces a tree — shortest-path tree.
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Initialization

» All shortest-paths algorithms start with the
same Initialization:

INIT-SINGLE-SOURCE(V, s)

foreach vinV

do d[v]«—<
m[v] < NIL

d[s] < O

CSE 2011
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Relaxing an edge

» Can we improve shortest-path estimate for v by first going to u

and then following edge (u,v)?
RELAX(u, v, w)
If d[v] > d[u] + w(u, v) then

d[v] « d[u] + w(u, V)

T[v]«<— u
{
y —
5 F———>(9
RELAX(1,v. W)
i’ T \
N 9
>0
CSE 2011
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General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.
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Example 1. Single-Source Shortest Path
on a Directed Acyclic Graph

» Basic ldea: topologically sort nodes and relax in linear
order.

» Efficient, since d[u] (shortest distance to u) has already
been computed when edge (u,v) Is relaxed.

» Thus we only relax each edge once, and never have to
backtrack.
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Example: Single-source shortest paths in a directed
acyclic graph (DAG)

» Since graph is a DAG, we are guaranteed no
negative-weight cycles.

» Thus algorithm can handle negative edges
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Algorithm

DAG-SHORTEST-PATHS (G, w, 5)

| topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u, taken in topologically sorted order
4 do for each vertex v € Adj[u]

5 do RELAX (i, v, w)

Time: OV +E)

1
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Example
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Example
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Example

(d)
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Example
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Example
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Example
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Correctness: Path relaxation property

Let p=<v,, v, ..., v, > be ashortest path froms =v, to v,.
If we relax, in order, (v,,v;), \,V.), ..., (V..1.V,).

even intermixed with other relaxations,

then d[v,] = 6(s, v,).
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Correctness of DAG Shortest Path Algorithm

» Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

 =>Edges on any shortest path are relaxed in order.

=By path-relaxation property, correct.
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Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

» This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).
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Dijkstra’s algorithm (E. Dijkstra,1959)

> Applies to general, weighted, directed or
undirected graph (may contain cycles).

» But weights must be non-negative. (But they
can be 0!)

» Essentially a weighted version of BFS.
 Instead of a FIFO queue, uses a priority queue.

[ Keys are shortest-path weights (d[v]).

» Maintain 2 sets of vertices:

S = vertices whose final shortest-path weights are

determined.
Edsger Dijkstra

 Q = priority queue = V-S.
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Dijkstra’s Algorithm: Operation

» We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

» We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

» At each step

1 We add to the cloud S the vertex u outside the cloud with the smallest
distance label, d(u)

 We update the labels of the vertices adjacent to u
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Dijkstra's algorithm

DUKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0

3 Q <« VI[G]

4  while Q # ¢

5 do u < EXTRACT-MIN(Q)

6 S «— S U {u)

7 for each vertex v € Adj[u]

8 do RELAX(u, v, w)

= Dijkstrd's algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V- S to add to S.
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Dijkstra's algorithm: Analysis

Analysis:
Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)
1 INITIALIZE-SINGLE-SOURCE(G, s) O(V)
2 S«

3 Q <« VI[G]

4  while Q # ¥

5 do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
6 S «— S U {u)

7 for each vertex v € Adj[u]

8 do RELAX(u, v, w) O(logV')xO(E) iterations

— Running Time is O(ElogV)
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Examp|e Key: White & VertexeQ=V -S
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Example
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Example
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Example

(d)
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Example
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Example
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Djikstra’s Algorithm Cannot Handle Negative Edges

2
S X y Z
YOR ' CSE 2011 - 204 - Last Updated: 4/1/10 10:16 AM
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Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w, §)
| INITIALIZE-SINGLE-SOURCE(G, s)
2 S <

3 Q0 <« VI[G]

4 while Q # 0

5  dou < EXTRACT-MIN(Q)
6 S «— SU{u)
7
3

for each vertex v € Adj[u]
do RELAX (i, v, w)

>~ Loop invariant: d[v] = 9d(s, v) forall vin S.
O Initialization: Initially, S is empty, so trivially true.
U Termination: Atend, Q isempty 2S =V - d[v] = 0(s, v) forall vin V.

L Maintenance:

<> Need to show that
d[u] = &(s, u) when u is added to S in each iteration.

d[u] does not change once u is added to S.
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Correctness of Dijkstra’s Algorithm: Upper Bound Property

» Upper Bound Property:

1. d[v]=6(s,v)VveV
2. Once d[v]=9d(s,v), it doesn't change

e Proof:

By induction.

Base Case: d[v] > 6(s,v)Vv e V immediately after initialization, since
d[s]=0=4(s,s)
dlv]=eVv #s

Inductive Step:

Suppose d[x]= (s, x)VxeV
Suppose we relax edge (u,v).

If d[v] changes, then d[v]=d[u]+w(u,Vv)

/ A valid path from s to v!
>0o(s,u)+w(u,v)

> 0(s,v)
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Correctness of Dijkstra’s Algorithm
Claim: When u is added to S, d[u] = d(s,u)

Proof by Contradiction: Let u be the first vertex added to S
such that d[u] # d(s,u) when u is added.

Let y be first vertex in V —S on shortest path to u
Let x be the predecessor of y on the shortest path to u

Claim: d[y]=6(s,y) when u is added to S. Optimal substructure

Proof: property!
d[x]=d(s, x), since xe S.

(x,y) was relaxed when x was added to S — d[y]=d(s,x)+w(x,y)=06(s,y)

Handled ) P>
/LN
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Correctness of Dijkstra’s Algorithm

Thus d[y]=9d(s,y) when u is added to S.
DUKSTRA(G, w, §)

—d[y]=96(s,y) < 6(s,u) < d[u] (upper bound property) 1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S<10

But d[u] £ d[y] when u added to S 3 Q <« VIG]
do u < EXTRACT-MIN(Q)

Thus d[y]=46(s,y) =0d(s,u) =d[u]! .

6 S «— S U {u}
_ 7 for each vertex v € Adj
Thus when u is added to S, d[u] = é(s,u) 8 do RELAX (u, v, Lj])[tl]

Consequences:
There is a shortest path to u such that the predecessor of u #[u]e S when u is added to S.

The path through y can only be a shortest path if w[p,]=0.

Handled
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Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S <0

3 0 <« V[G]

4  while Q # ¢

5 do u < EXTRACT-MIN(Q)

6 $ < S U{u) Relax(u,v,w) can only decrease d[v].

7 for each vertex v € Ad;[u]

8 € ~do RELAX(u, v, w)_ > By the upper bound property, d[v] > 3(s,v).

_—_——_—

Thus once d[v] = d(s,v), it will not be changed.
» Loop invariant: d[v] = 0(s, v) for all vin S.

L Maintenance:
<> Need to show that

z = d[u] does not change once u is added to S. - = _D ?

— -
e e o o o mm mm o s = =
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