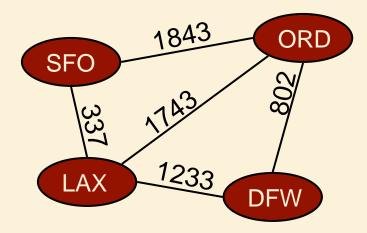
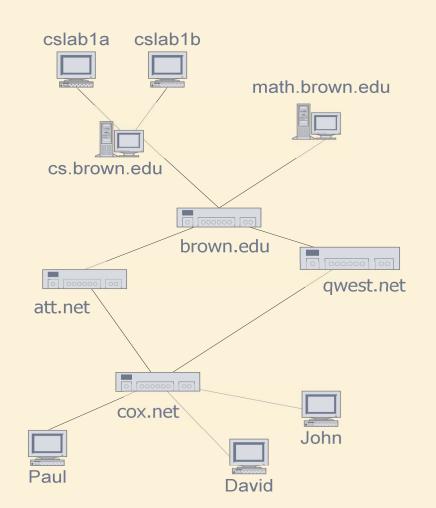
Graphs



Applications

- Electronic circuits
 Printed circuit board
 Integrated circuit
 Transportation networks
 Highway network
 Flight network
 Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram



Graphs

 \succ A graph is a pair (*V*, *E*), where

 \Box V is a set of nodes, called vertices

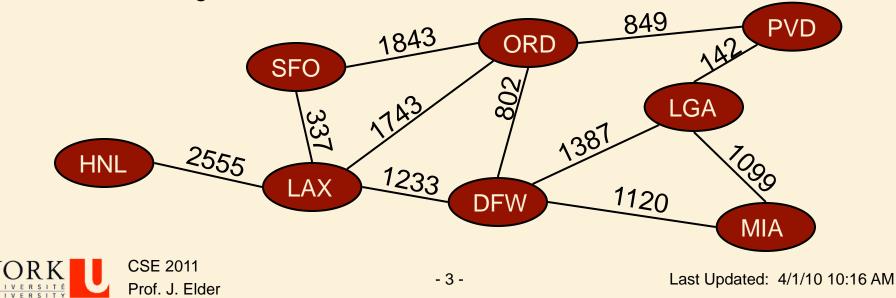
 \Box *E* is a collection of pairs of vertices, called edges

Vertices and edges are positions and store elements

> Example:

□ A vertex represents an airport and stores the three-letter airport code

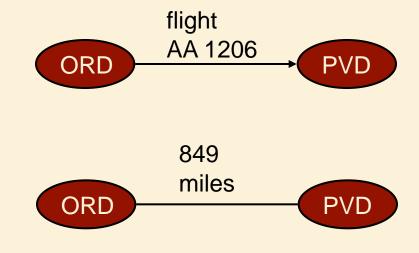
An edge represents a flight route between two airports and stores the mileage of the route



Edge Types

Directed edge

- \Box ordered pair of vertices (*u*,*v*)
- \Box first vertex u is the origin
- \Box second vertex *v* is the destination
- e.g., a flight
- Undirected edge
 - \Box unordered pair of vertices (*u*,*v*)
 - e.g., a flight route
- Directed graph (Digraph)
 - □ all the edges are directed
 - e.g., route network
- Undirected graph
 - □ all the edges are undirected
 - e.g., flight network



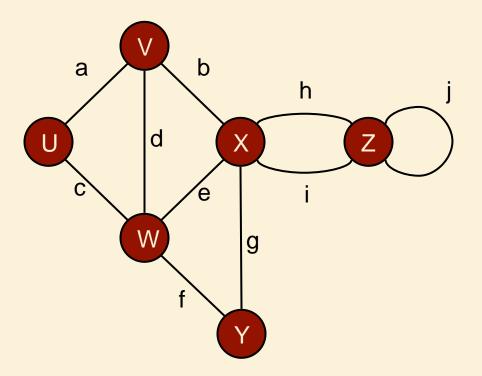
CSE 2011 Prof. J. Elder

Vertices and Edges

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - □ a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - □ X has degree 5
- Parallel edges
 - □ h and i are parallel edges
- Self-loop
 - □ j is a self-loop

CSE 2011

Prof. J. Elder



Paths

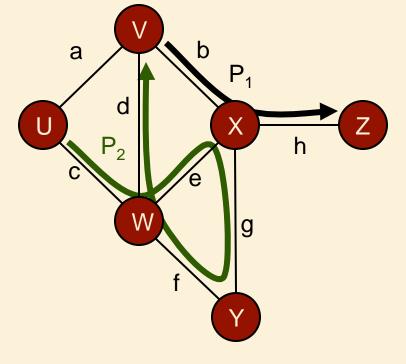
Path

sequence of alternating vertices and edges

begins with a vertex

ends with a vertex

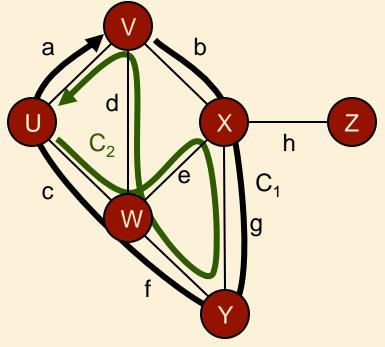
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - \square P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple



Cycles

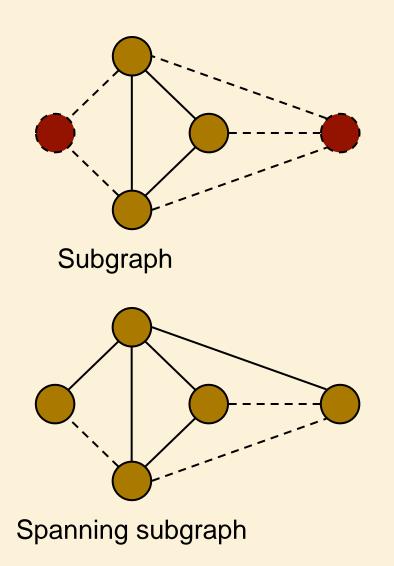
Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- > Examples
 - □ C₁=(V,b,X,g,Y,f,W,c,U,a, ←) is a simple cycle
 - □ C₂=(U,c,W,e,X,g,Y,f,W,d,V,a, ←) is a cycle that is not simple



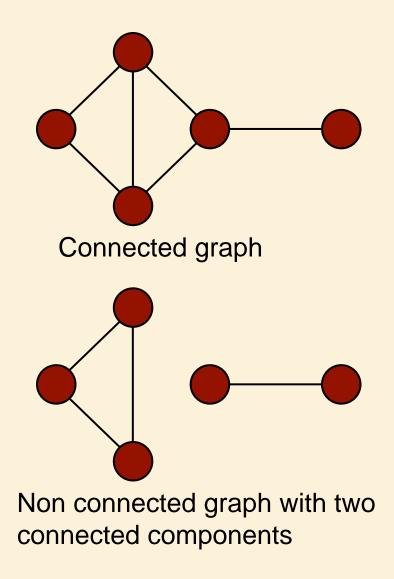
Subgraphs

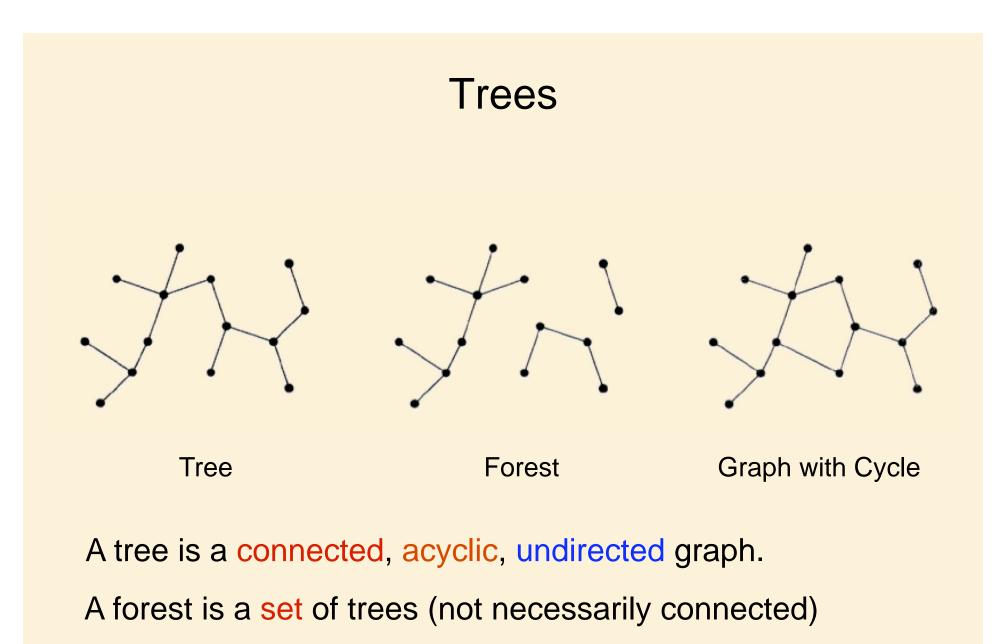
- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G



Connectivity

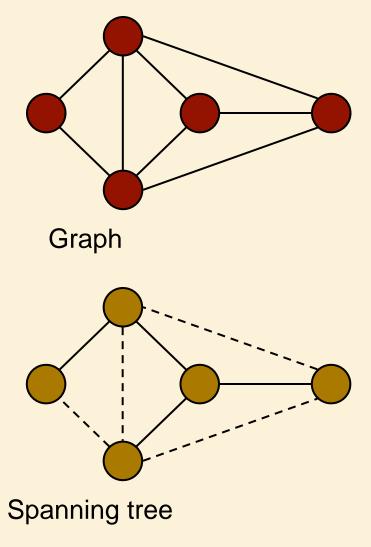
- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G





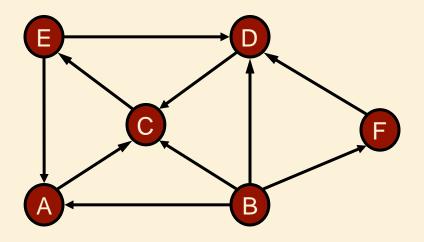
Spanning Trees

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

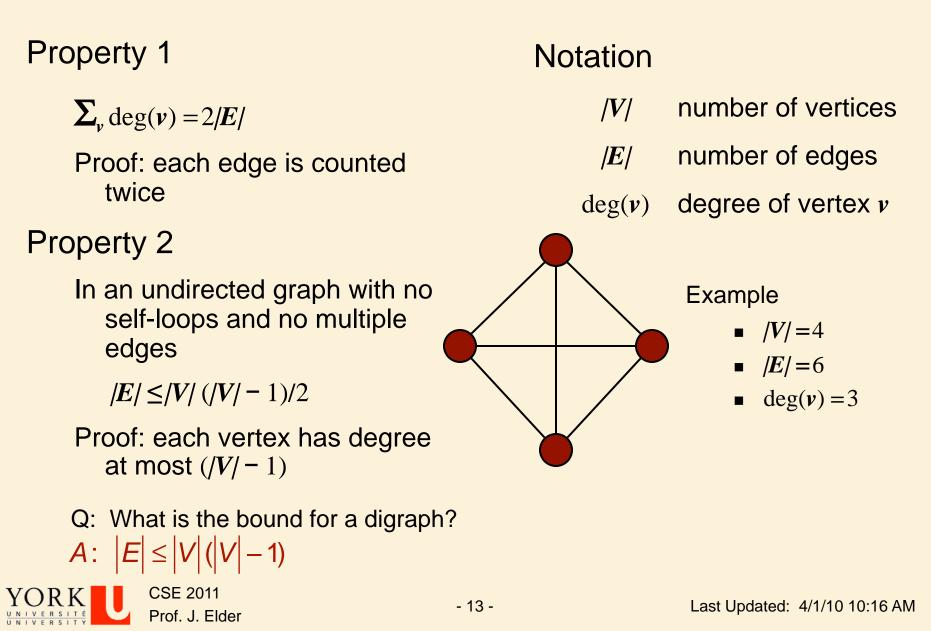


Reachability in Directed Graphs

- A node w is *reachable* from v if there is a directed path originating at v and terminating at w.
 - □ E is reachable from B
 - □ B is not reachable from E



Properties



Main Methods of the (Undirected) Graph ADT

- Vertices and edges
 - are positions
 - store elements

Accessor methods

- endVertices(e): an array of the two endvertices of e
- opposite(v, e): the vertex opposite to v on e
- areAdjacent(v, w): true iff v and w are adjacent
- replace(v, x): replace element at vertex v with x
- replace(e, x): replace element at edge e with x

Update methods

- insertVertex(o): insert a vertex storing element o
- insertEdge(v, w, o): insert an edge (v,w) storing element o
- removeVertex(v): remove vertex
 v (and its incident edges)
- □ removeEdge(e): remove edge e

Iterator methods

- incidentEdges(v): edges incident to v
- vertices(): all vertices in the graph
- dges(): all edges in the graph

CSE 2011 Prof. J. Elder

Directed Graph ADT

Additional methods:

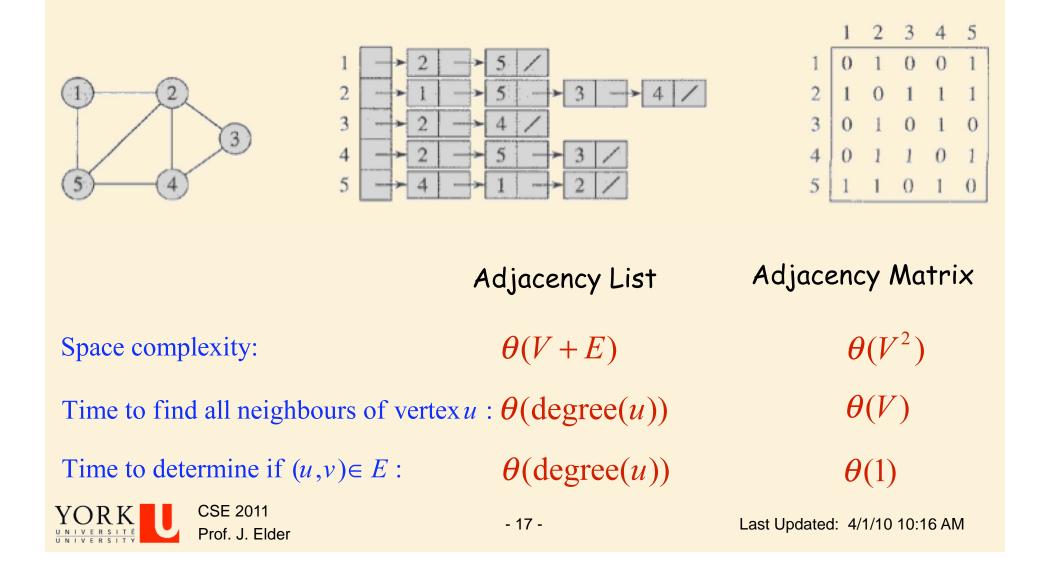
- □ isDirected(e): return true if e is a directed edge
- insertDirectedEdge(v, w, o): insert and return a new directed edge with origin v and destination w, storing element o

Running Time of Graph Algorithms

Running time often a function of both |V| and |E|.

For convenience, we sometimes drop the |. | in asymptotic notation, e.g. O(V+E).

Implementing a Graph (Simplified)



Representing Graphs (Details)

- > Three basic methods
 - **Edge** List
 - Adjacency List
 - □ Adjacency Matrix

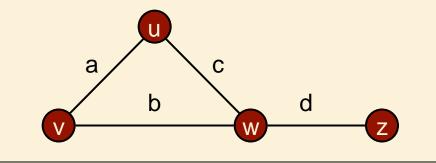
Edge List Structure

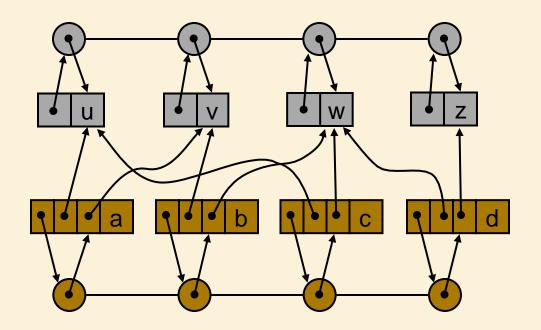
- 19 -

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - □ sequence of vertex objects
- Edge sequence
 - sequence of edge objects

CSE 2011

Prof. J. Elder

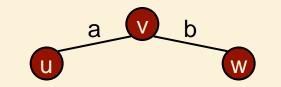


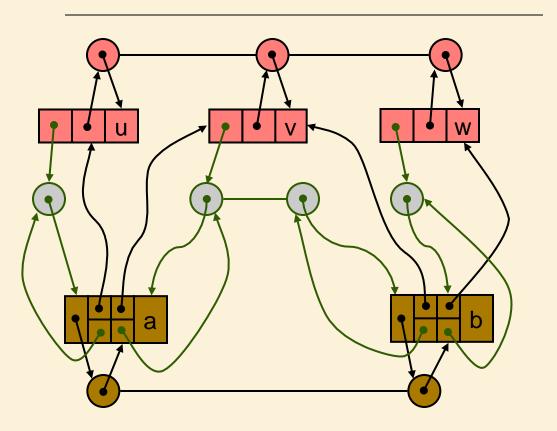


Adjacency List Structure

Edge list structure

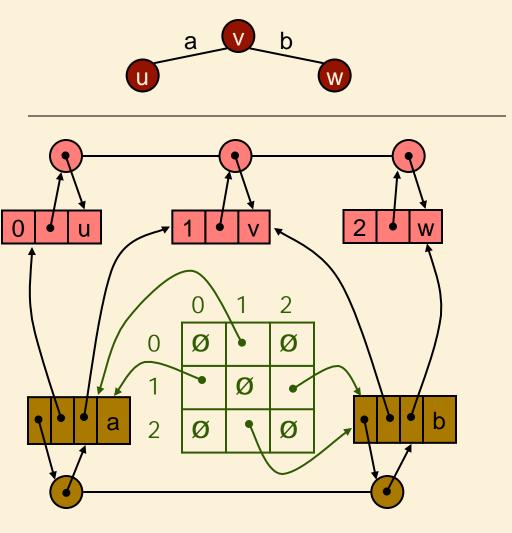
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices





Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for nonnonadjacent vertices



Asymptotic Performance (assuming collections V and E represented as doubly-linked lists)

 /V/ vertices, /E/ edges no parallel edges no self-loops Bounds are "big-Oh" 	Edge List	Adjacency List	Adjacency Matrix
Space	/V/+/E/	/V/+/E/	/ V / ²
incidentEdges(v)	/ E /	deg(v)	/ V /
areAdjacent (v, w)	/ E /	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	/ V / ²
insertEdge(v, w, o)	1	1	1
removeVertex(v)	/ E /	deg(v)	/ V / ²
removeEdge(e)	1	1	1

Graph Search Algorithms

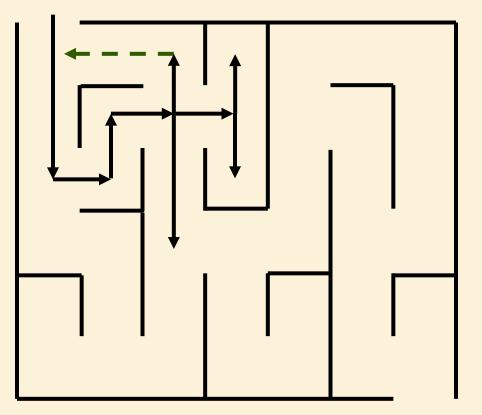
Depth First Search (DFS)

Idea:

- Continue searching "deeper" into the graph, until we get stuck.
- □ If all the edges leaving *v* have been explored we "backtrack" to the vertex from which *v* was discovered.
- Analogous to Euler tour for trees
- Used to help solve many graph problems, including
 - \Box Nodes that are reachable from a specific node v
 - Topological sorts
 - Detection of cycles
 - Extraction of strongly connected components

Depth-First Search

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

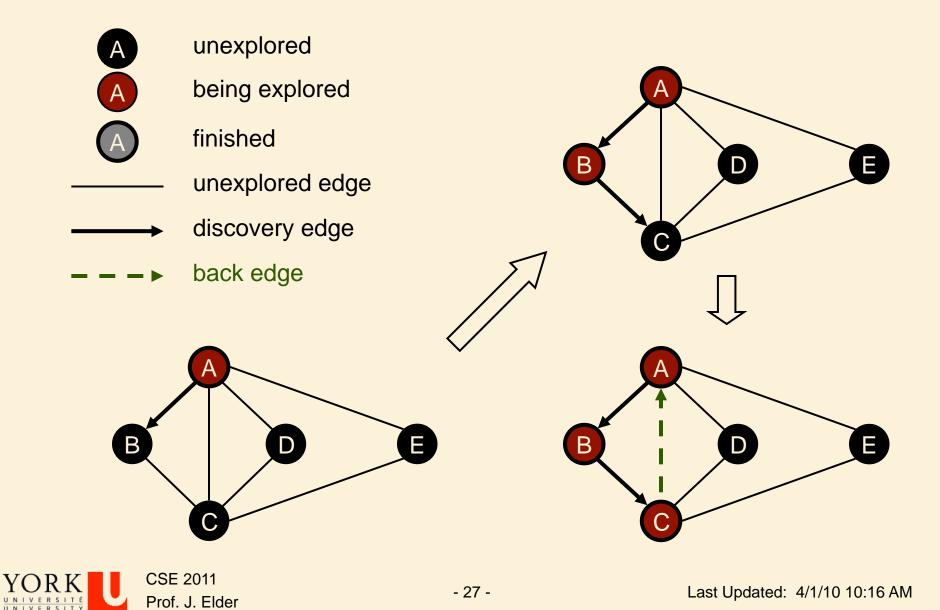


Depth-First Search

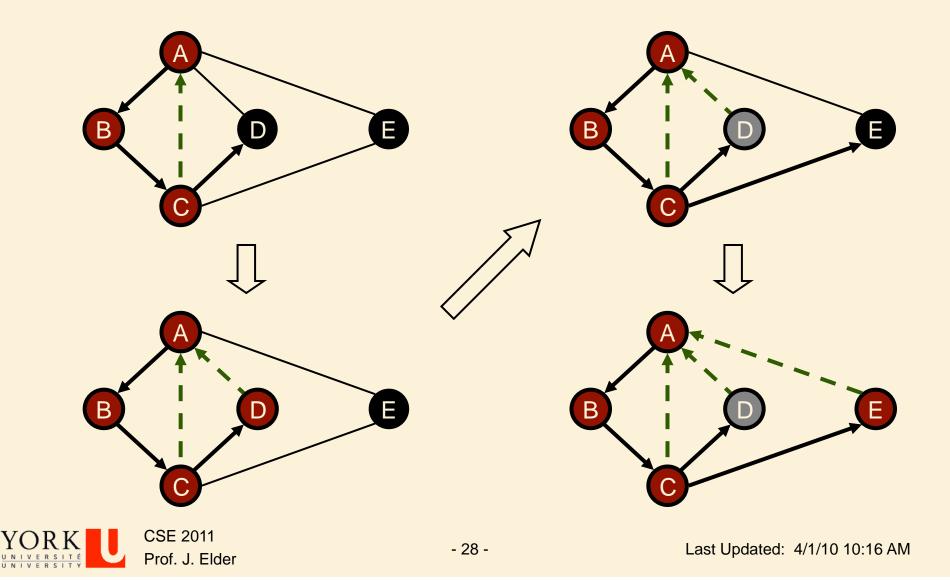
Input: Graph G = (V, E) (directed or undirected)

- > Explore *every* edge, starting from different vertices if necessary.
- > As soon as vertex discovered, explore from it.
- Keep track of progress by colouring vertices:
 - □ Black: undiscovered vertices
 - □ Red: discovered, but not finished (still exploring from it)
 - Gray: finished (found everything reachable from it).

DFS Example on Undirected Graph



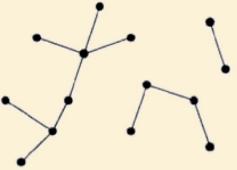
Example (cont.)



UN

DFS Algorithm Pattern

DFS(G) Precondition: G is a graph Postcondition: all vertices in G have been visited for each vertex $u \in V[G]$ color[u] = BLACK //initialize vertex for each vertex $u \in V[G]$ if color[u] = BLACK //as yet unexplored DFS-Visit(u)



DFS Algorithm Pattern

```
DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] \leftarrow RED

for each v \in Adj[u] //explore edge (u, v)

if color[v] = BLACK

DFS-Visit(v)

colour[u] \leftarrow GRAY
```

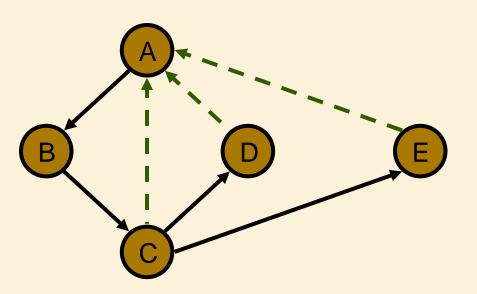
Properties of DFS

Property 1

DFS-Visit(u) visits all the vertices and edges in the connected component of u

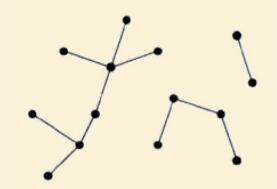
Property 2

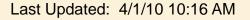
The discovery edges labeled by *DFS-Visit(u)* form a spanning tree of the connected component of *u*



DFS Algorithm Pattern

DFS(G) Precondition: G is a graph Postcondition: all vertices in G have been visited for each vertex $u \in V[G]$ color[u] = BLACK //initialize vertex for each vertex $u \in V[G]$ if color[u] = BLACK //as yet unexplored DFS-Visit(u)





DFS Algorithm Pattern

```
DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
        colour[u] \leftarrow RED
        for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                                                          total work
= \sum_{v} |Adj[v]| = \theta(E)
                 if color[v] = BLACK
                         DFS-Visit(v)
        colour[u] \leftarrow GRAY
```

Thus running time = $\theta(V + E)$ (assuming adjacency list structure)

Variants of Depth-First Search

- In addition to, or instead labeling vertices with colours, they can be labeled with **discovery** and **finishing** times.
- 'Time' is an integer that is incremented whenever a vertex changes state from unexplored to discovered
 - □ from **discovered** to finished
- These discovery and finishing times can then be used to solve other graph problems (e.g., computing strongly-connected components)

Input: Graph G = (V, E) (directed or undirected)

Output: 2 timestamps on each vertex: d[v] =discovery time. $1 \le d[v] < f[v] \le 2|V|$ f[v] = finishing time.

DFS Algorithm with Discovery and Finish Times DFS(G) Precondition: G is a graph Postcondition: all vertices in G have been visited for each vertex $u \in V[G]$ color[u] = BLACK //initialize vertex time $\leftarrow 0$ for each vertex $u \in V[G]$ if color[u] = BLACK //as yet unexplored DFS-Visit(*u*)

DFS Algorithm with Discovery and Finish Times

DFS-Visit (*u*)

Precondition: vertex *u* is undiscovered

Postcondition: all vertices reachable from u have been processed

```
colour[u] \leftarrow RED

time \leftarrow time + 1

d[u] \leftarrow time

for each v \in Adj[u] //explore edge (u, v)

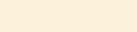
if color[v] = BLACK

DFS-Visit(v)

colour[u] \leftarrow GRAY

time \leftarrow time + 1

f[u] \leftarrow time
```

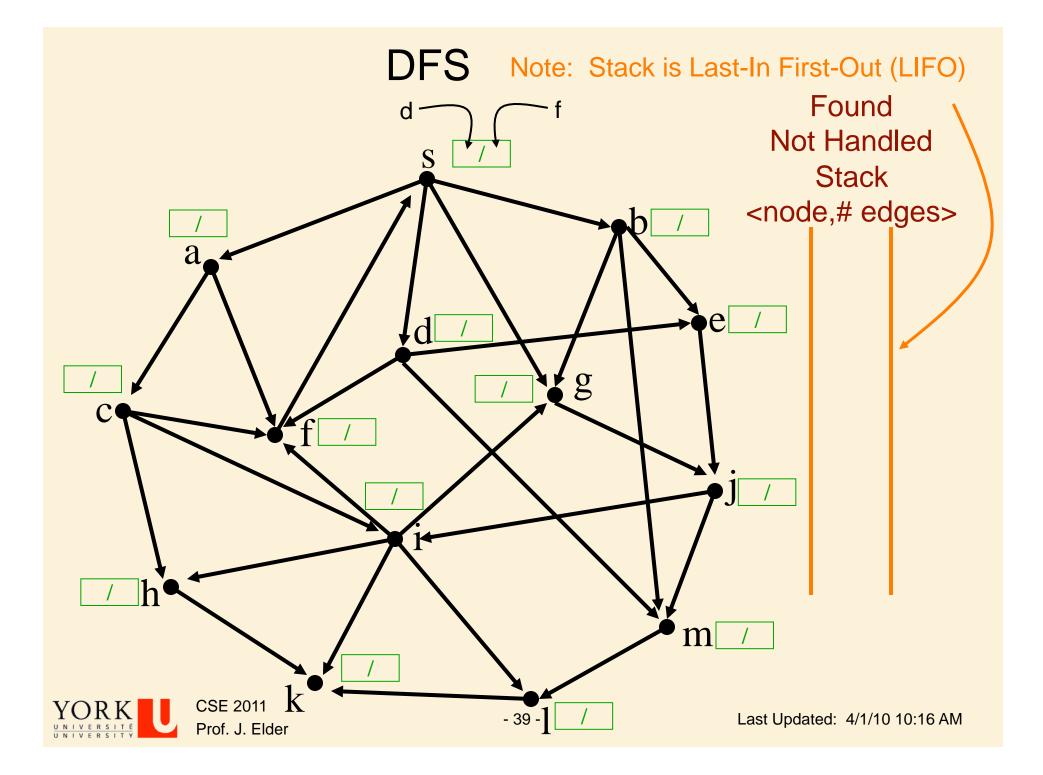


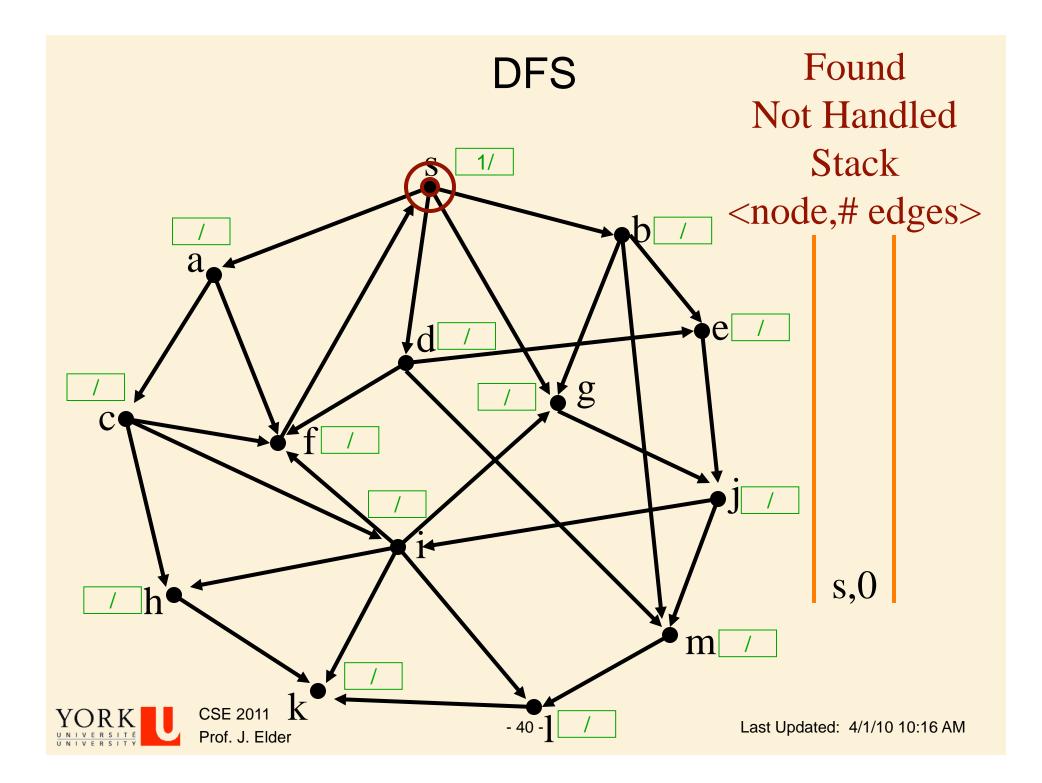
Other Variants of Depth-First Search

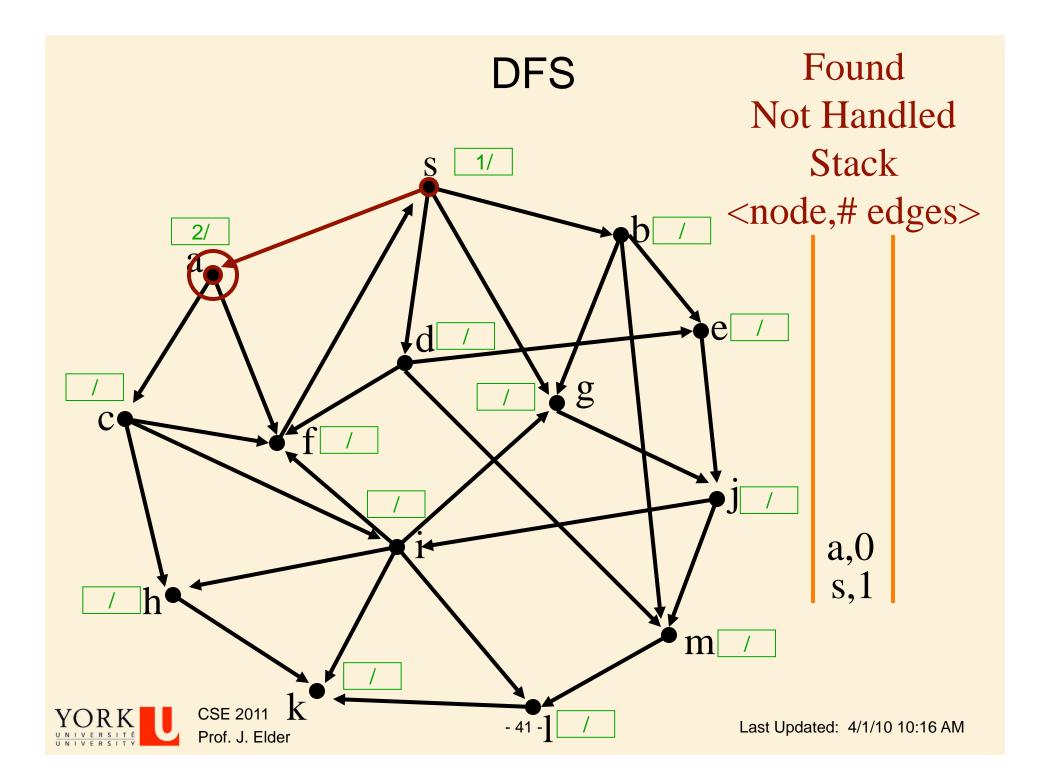
> The DFS Pattern can also be used to

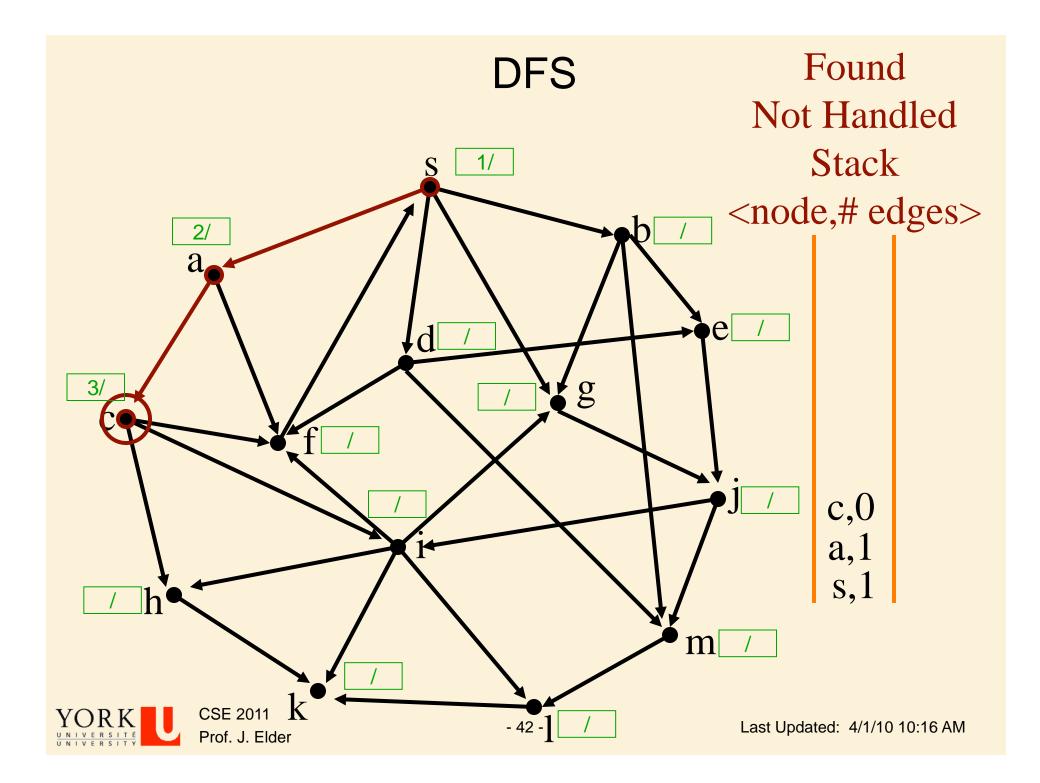
- Compute a forest of spanning trees (one for each call to DFSvisit) encoded in a predecessor list π[u]
- Label edges in the graph according to their role in the search (see textbook)
 - ♦ Tree edges, traversed to an undiscovered vertex
 - Forward edges, traversed to a descendent vertex on the current spanning tree
 - Back edges, traversed to an ancestor vertex on the current spanning tree
 - Cross edges, traversed to a vertex that has already been discovered, but is not an ancestor or a descendent

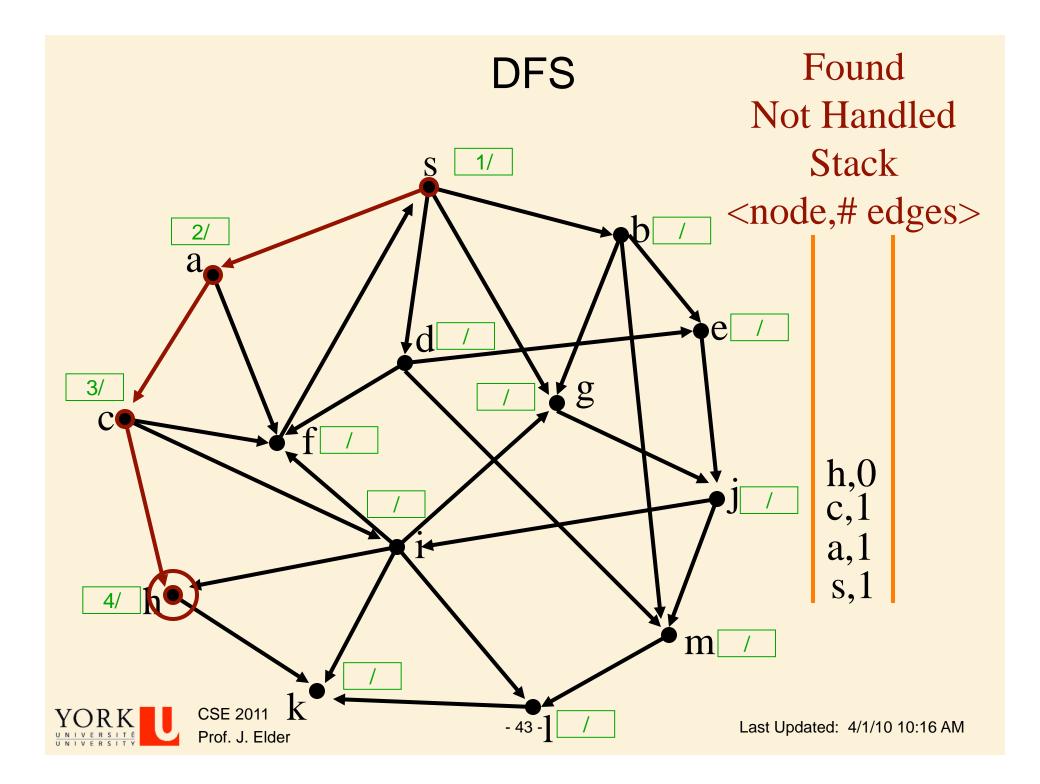
Example DFS on Directed Graph

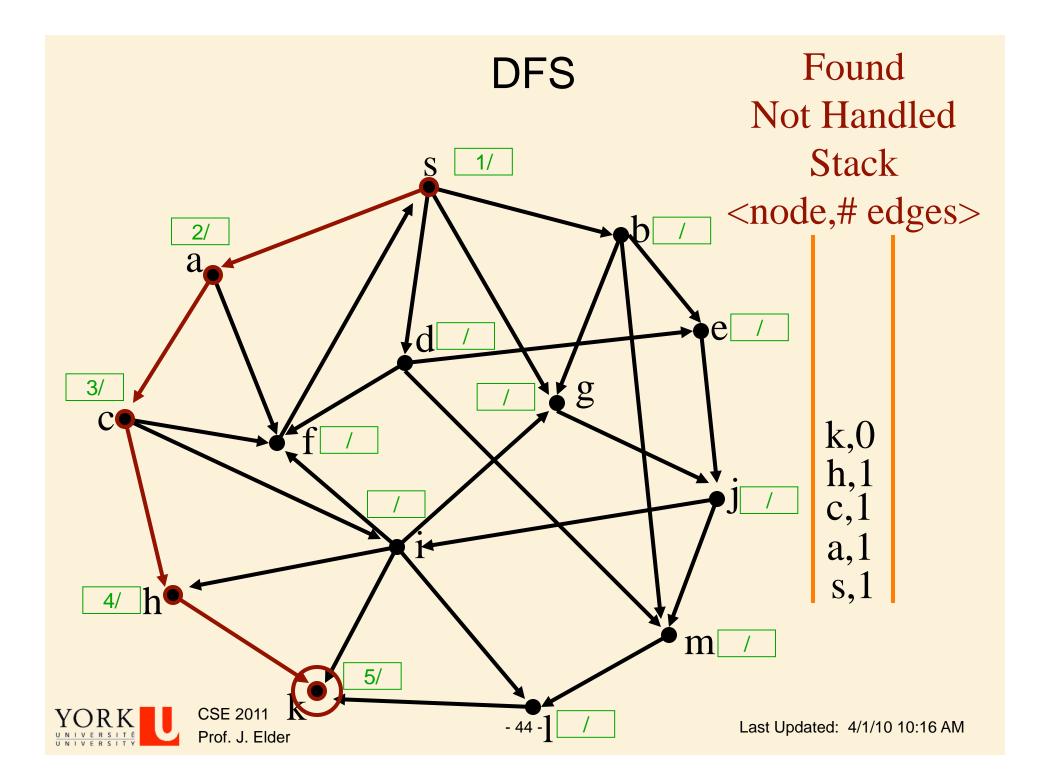


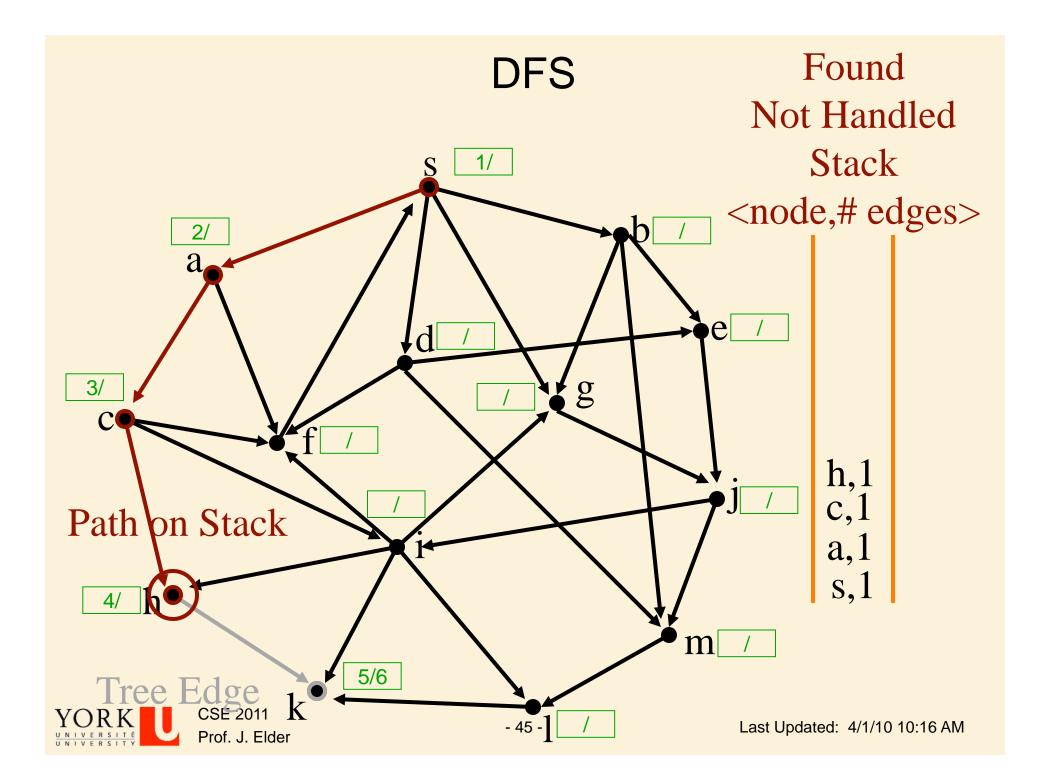


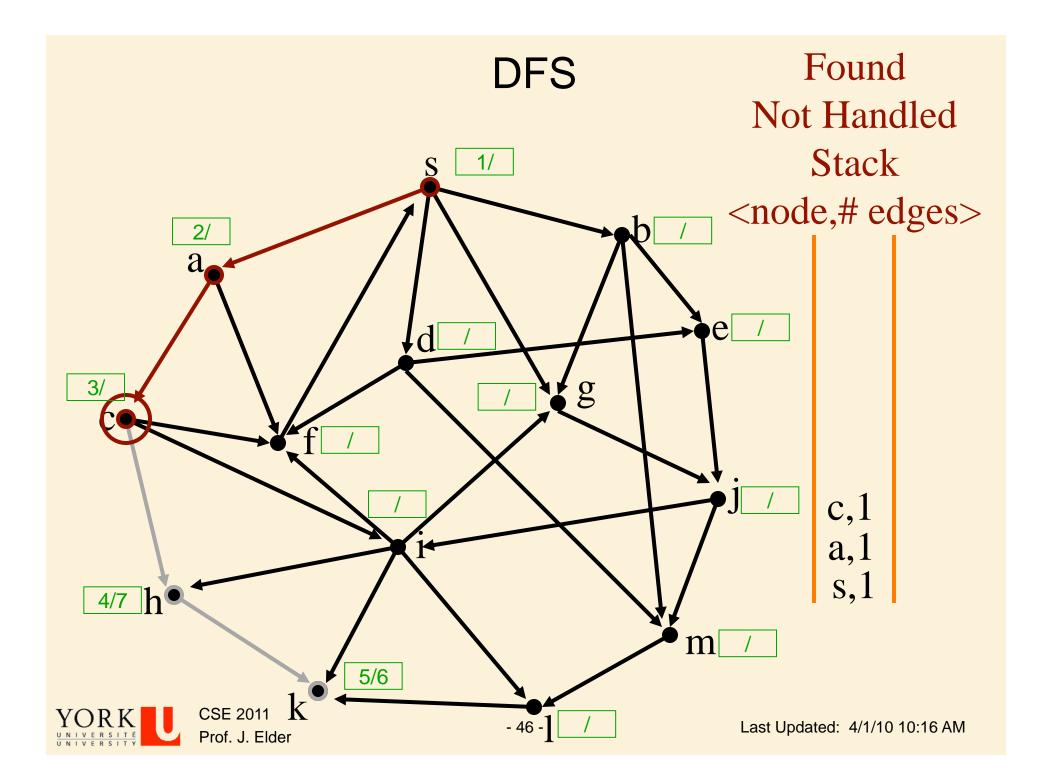


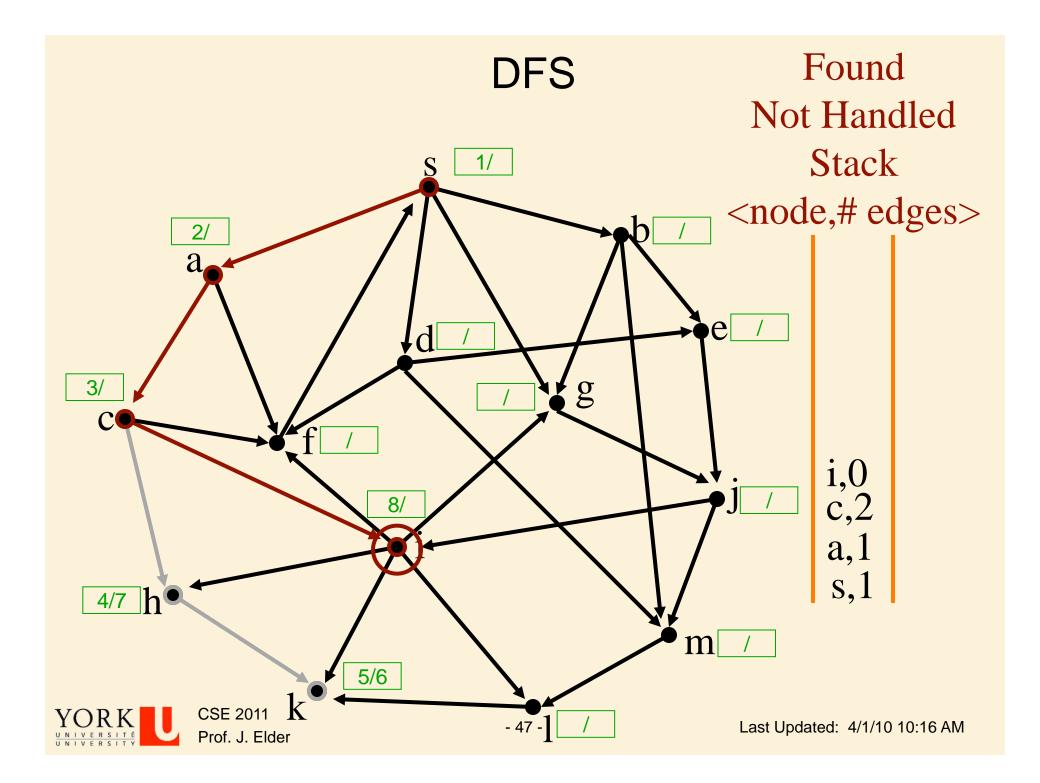


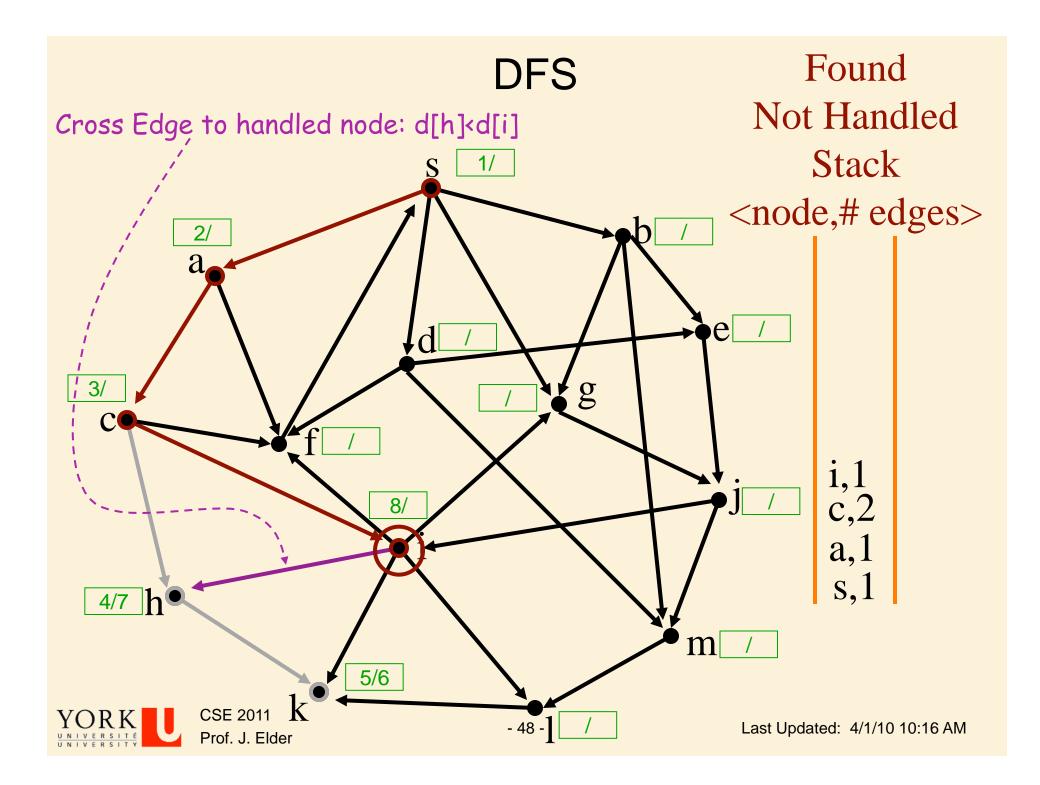


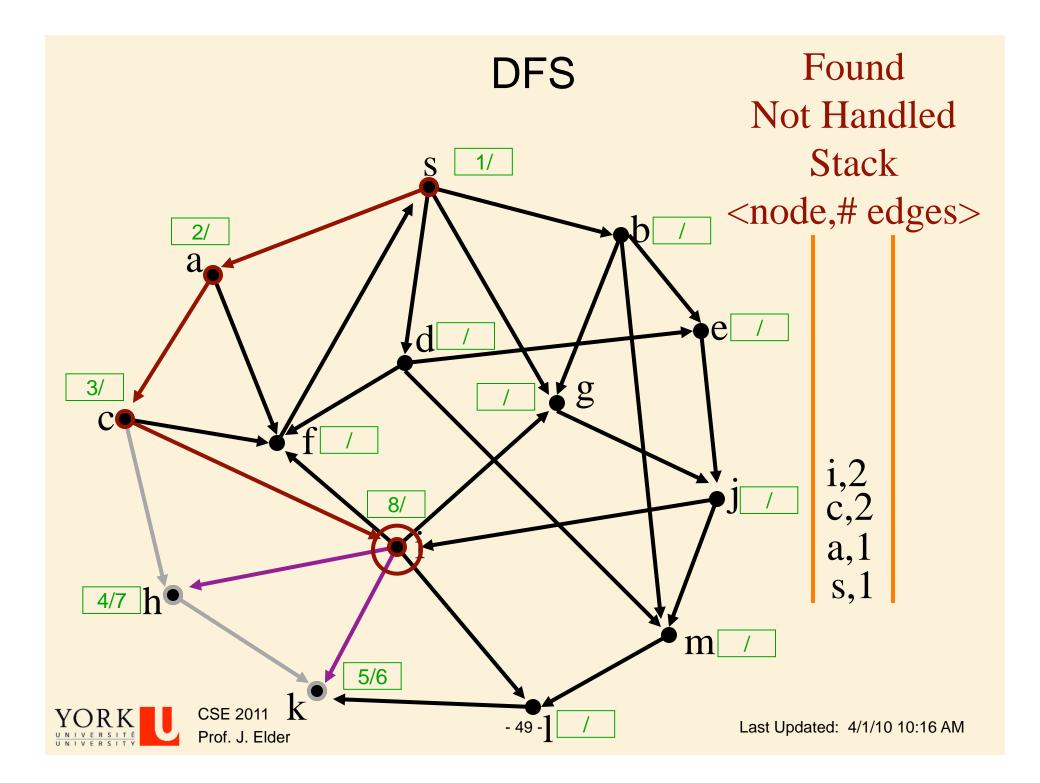


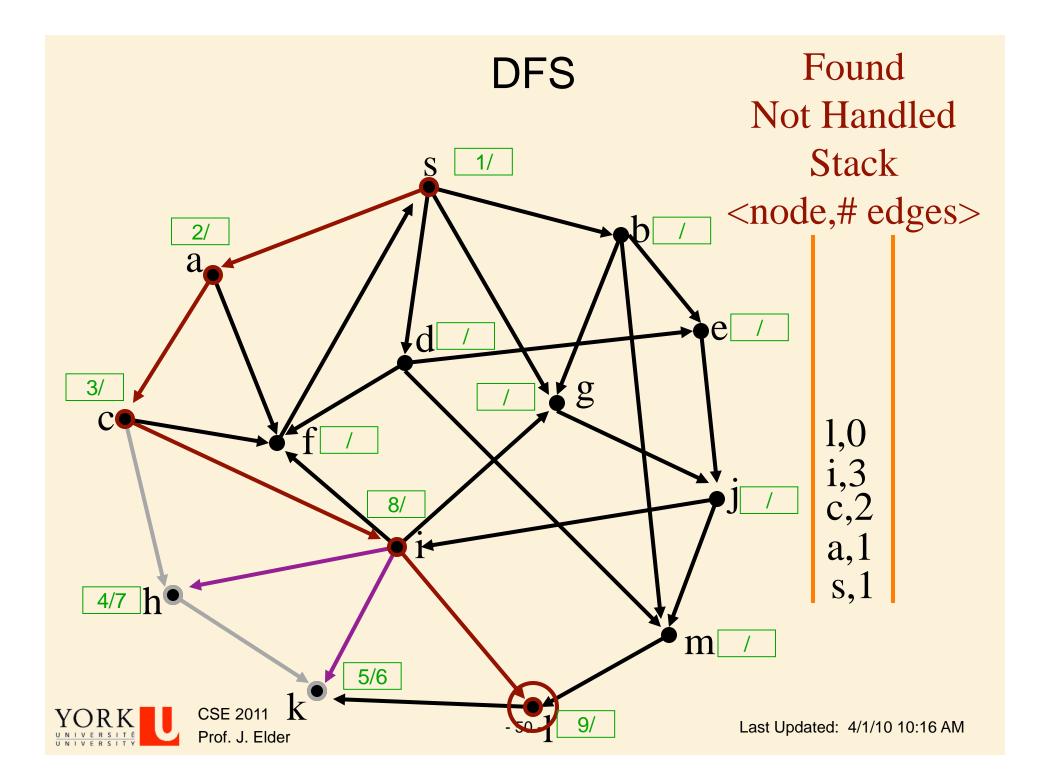


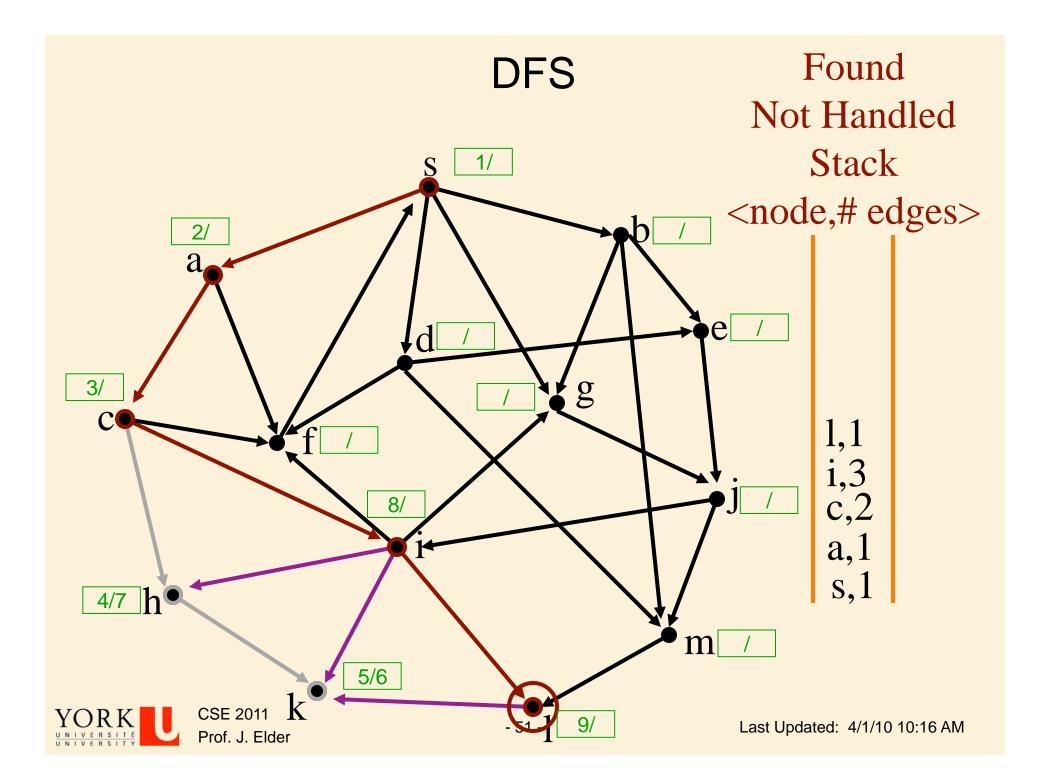


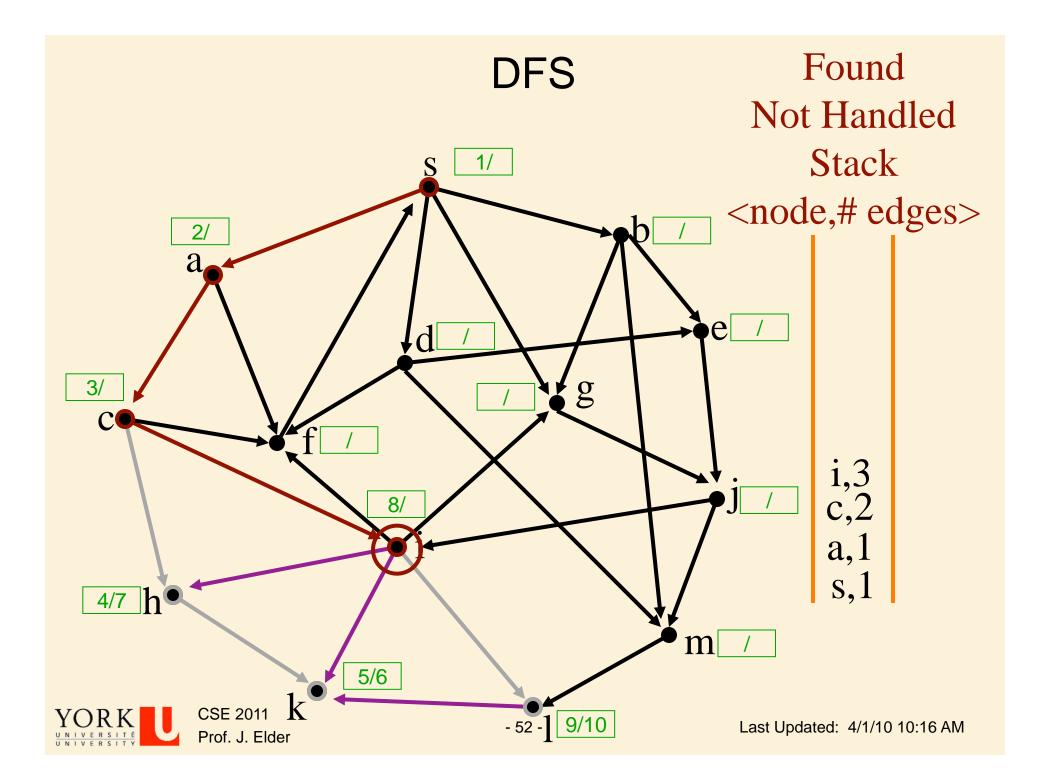


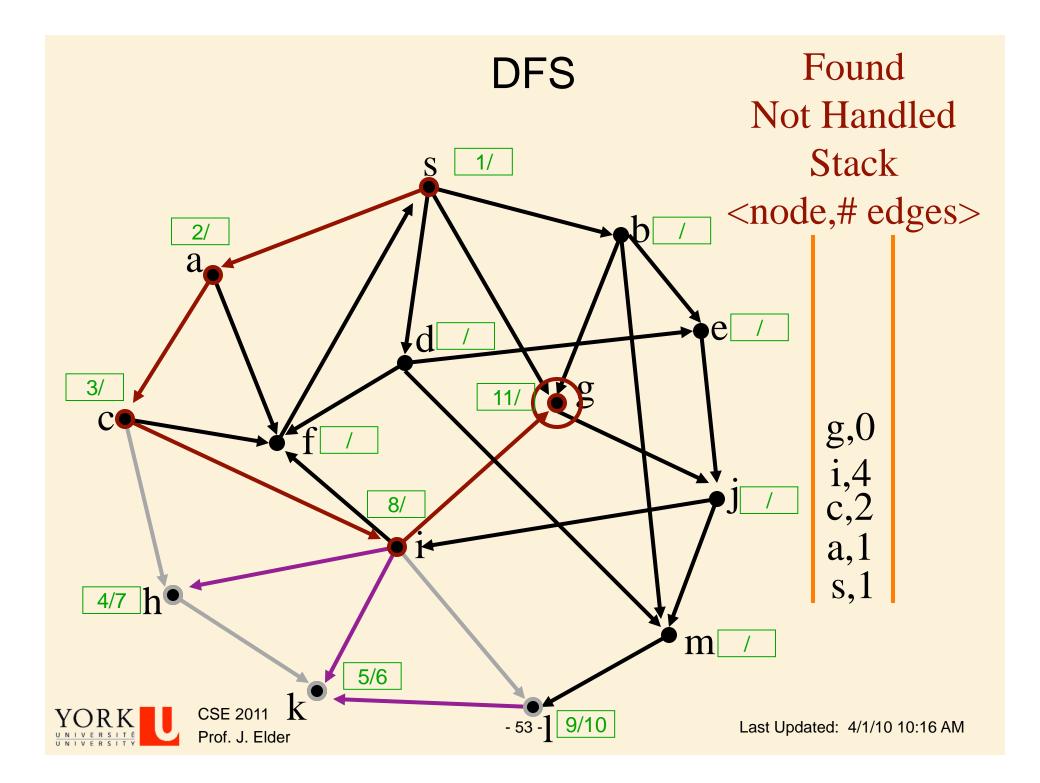


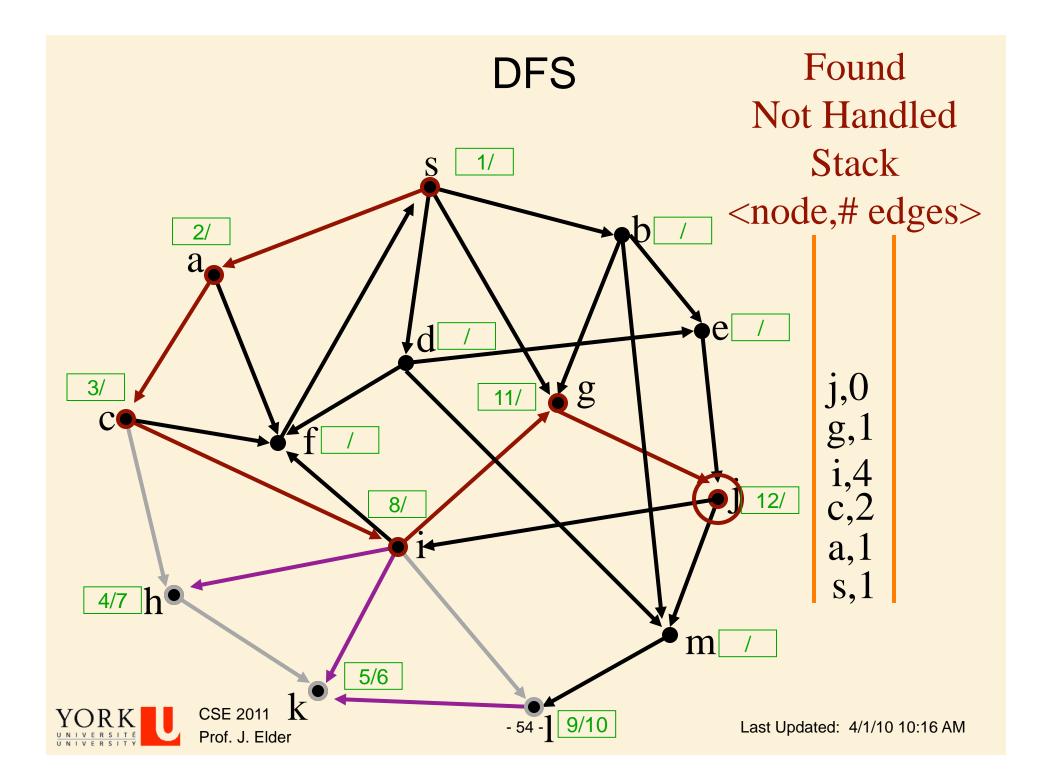


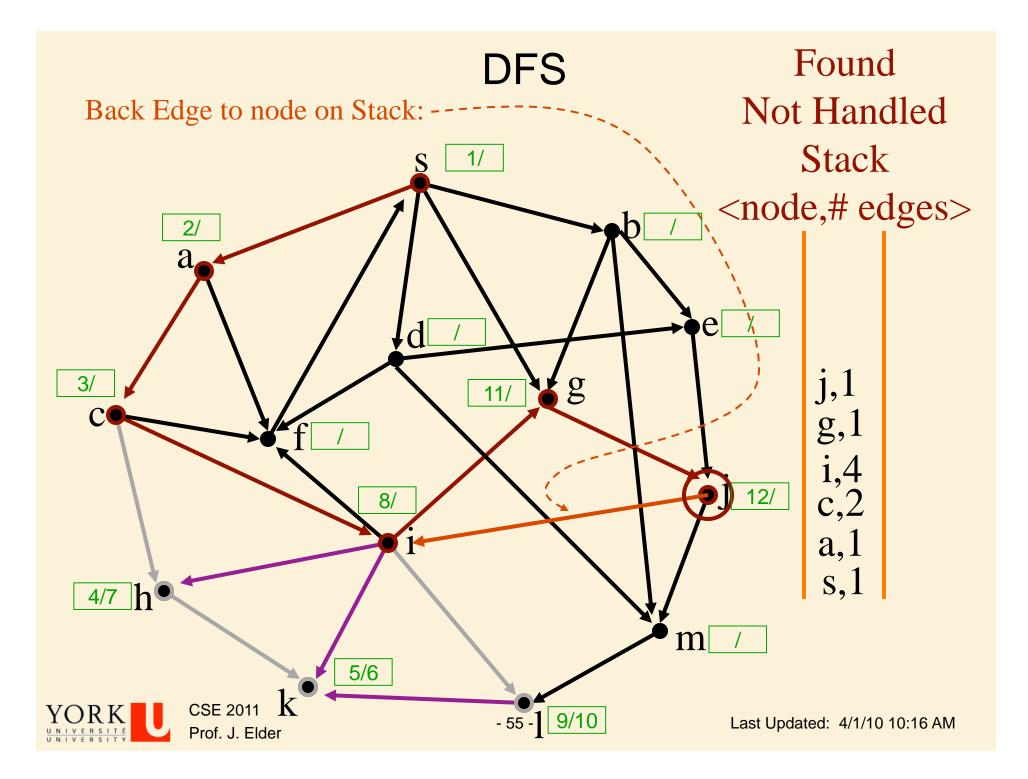


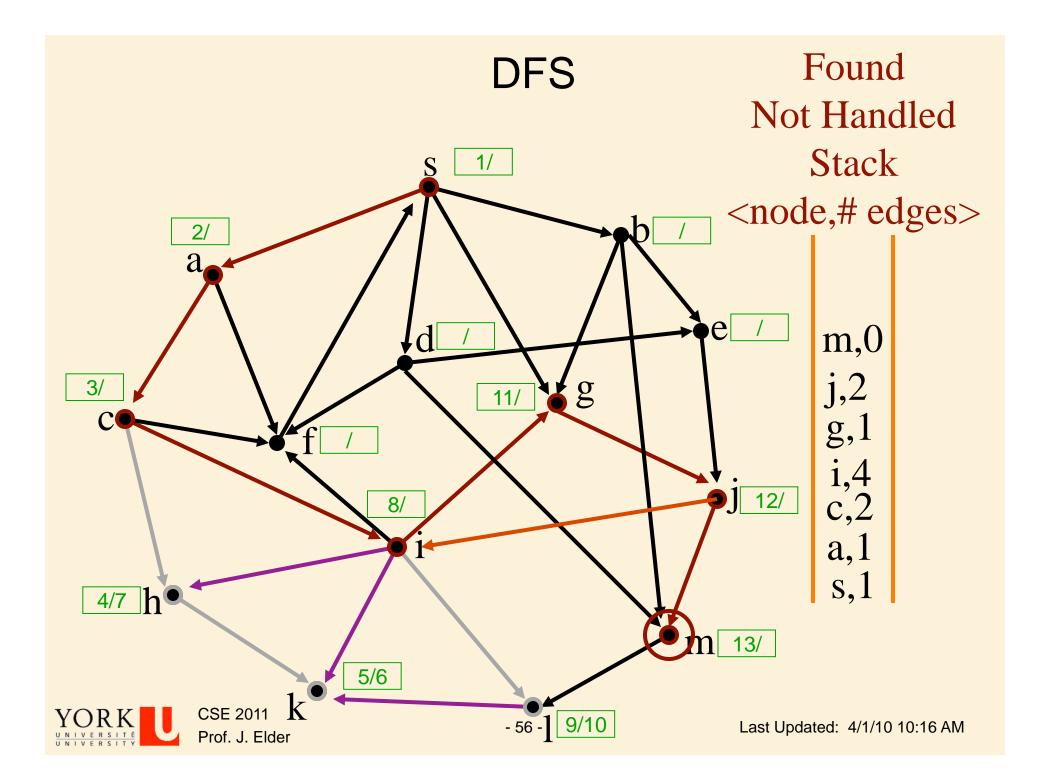


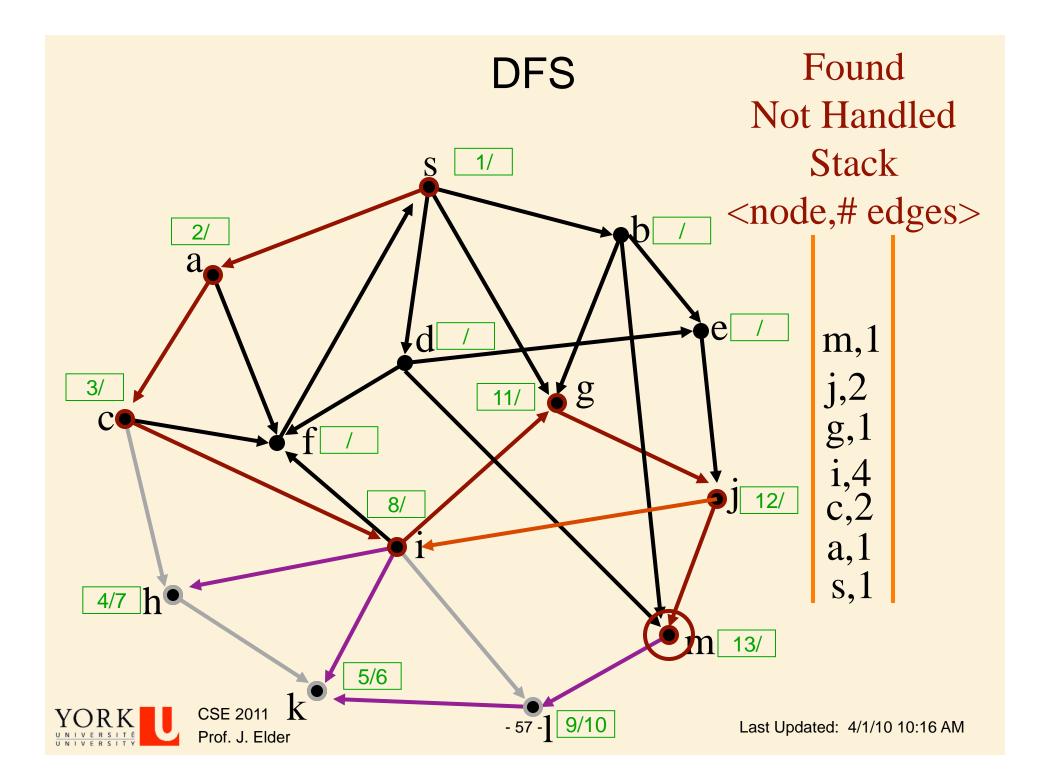


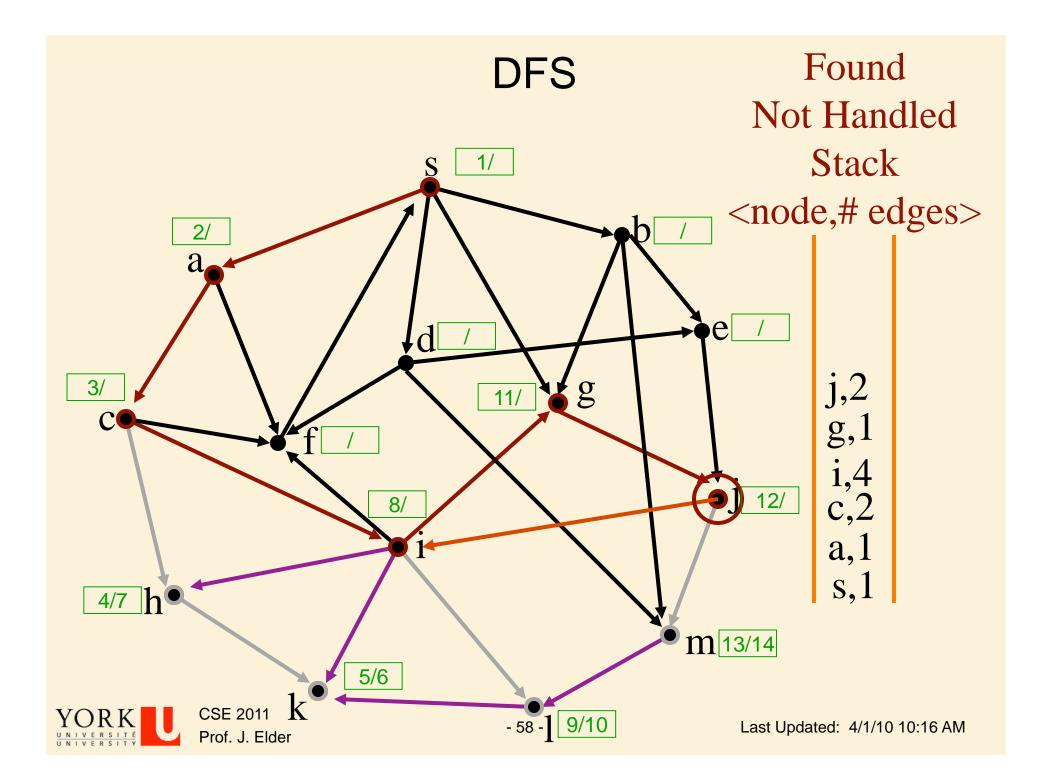


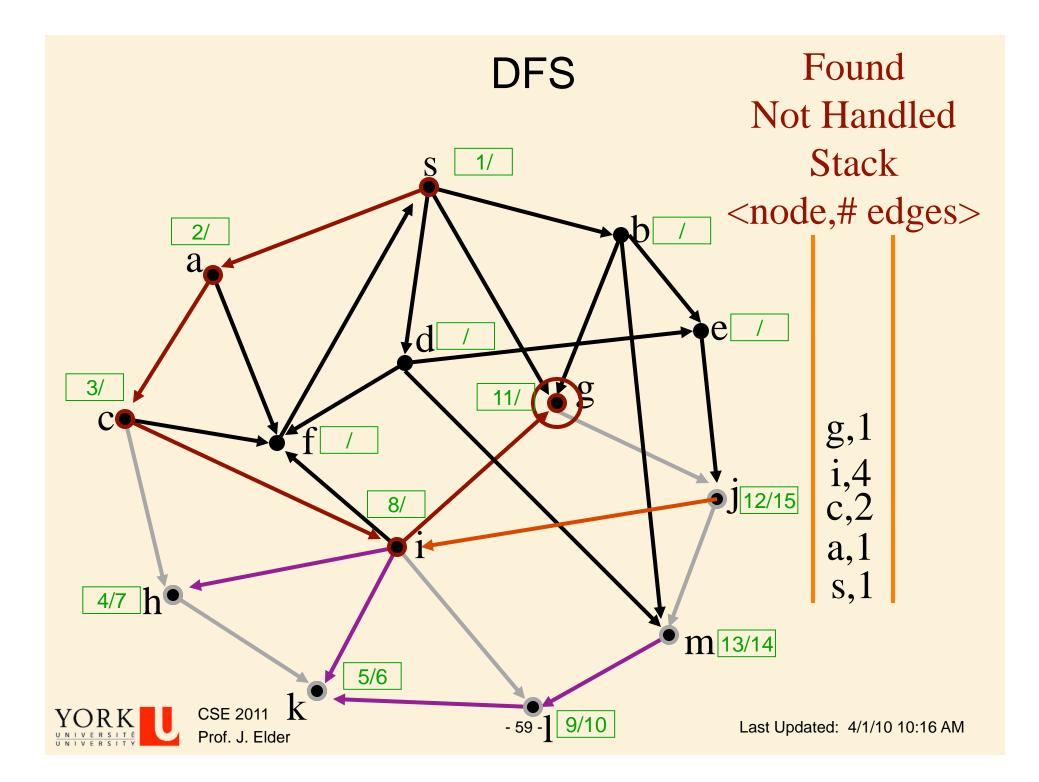


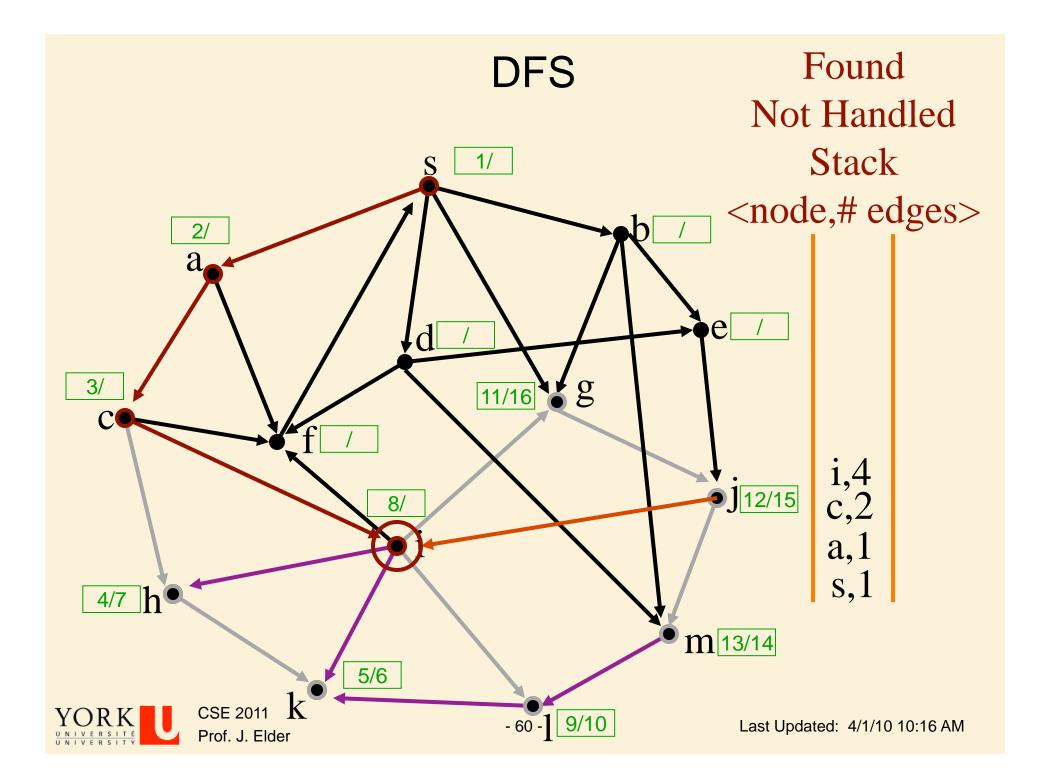


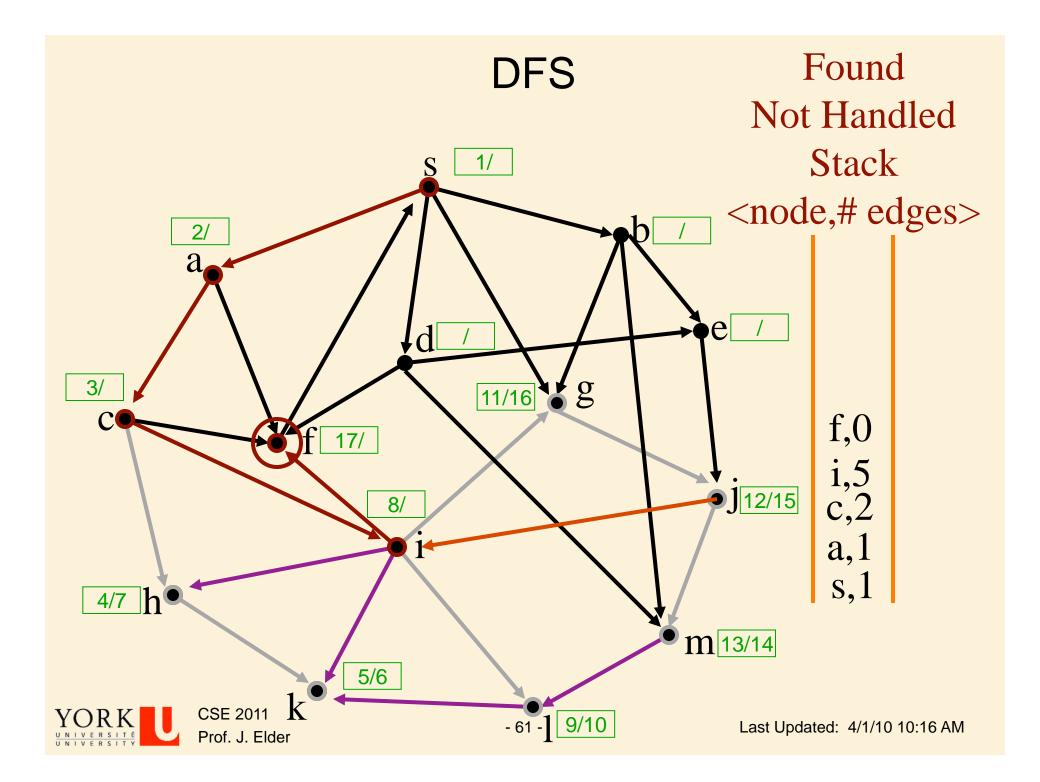


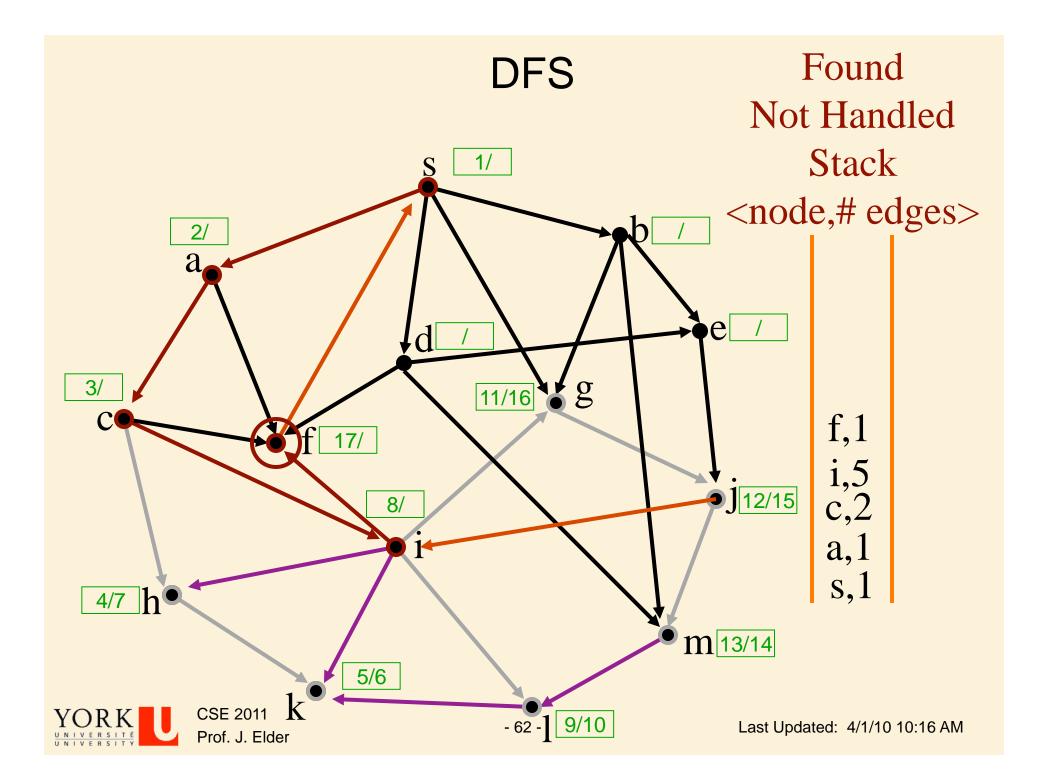


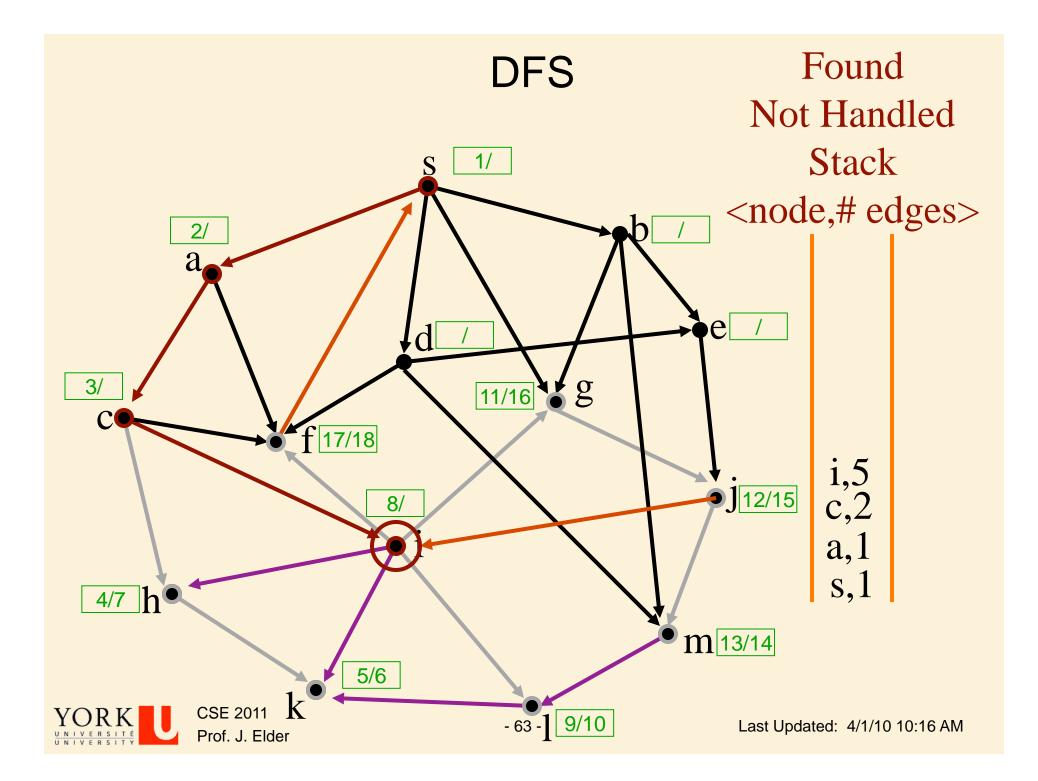


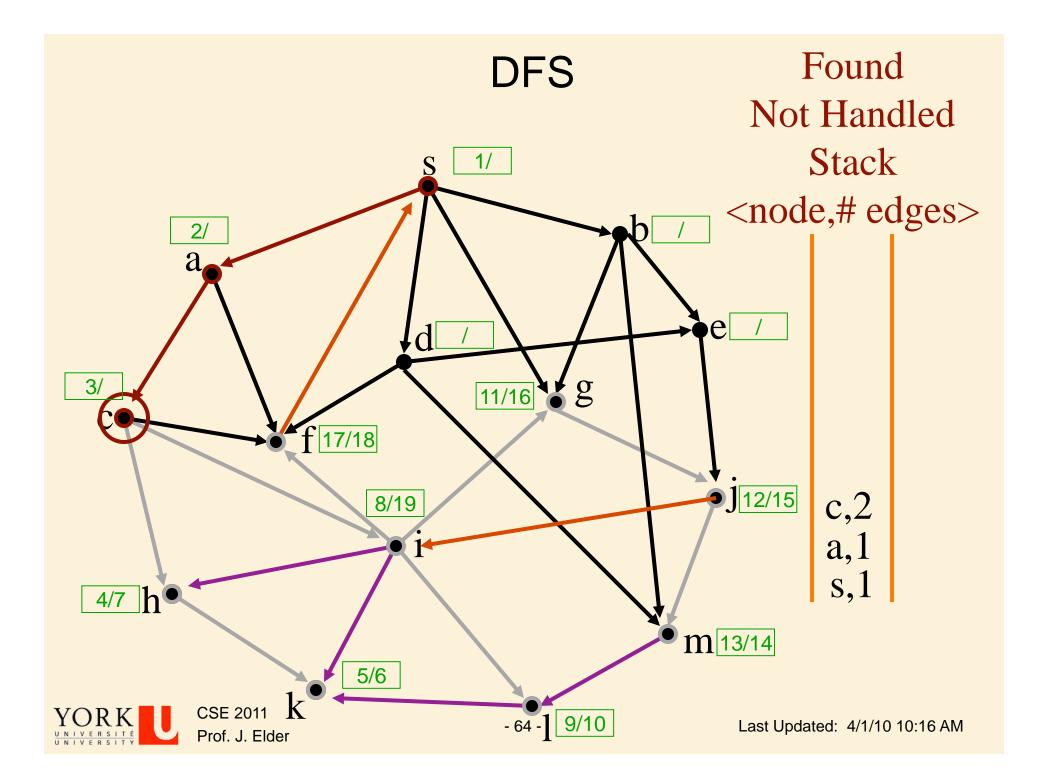


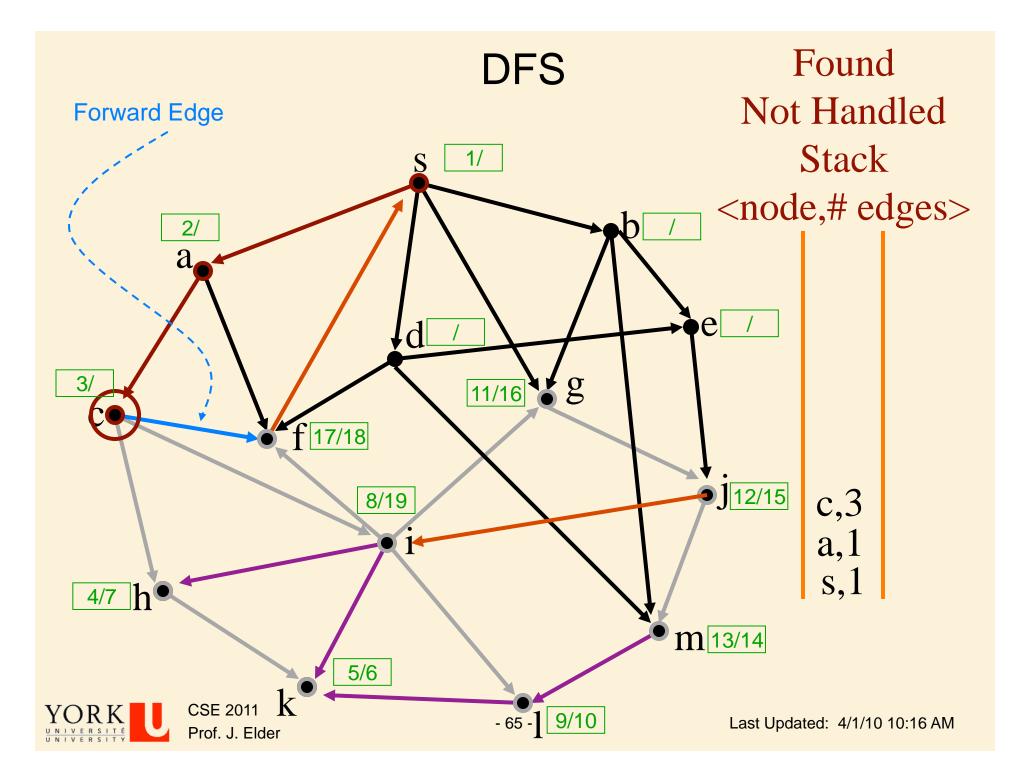


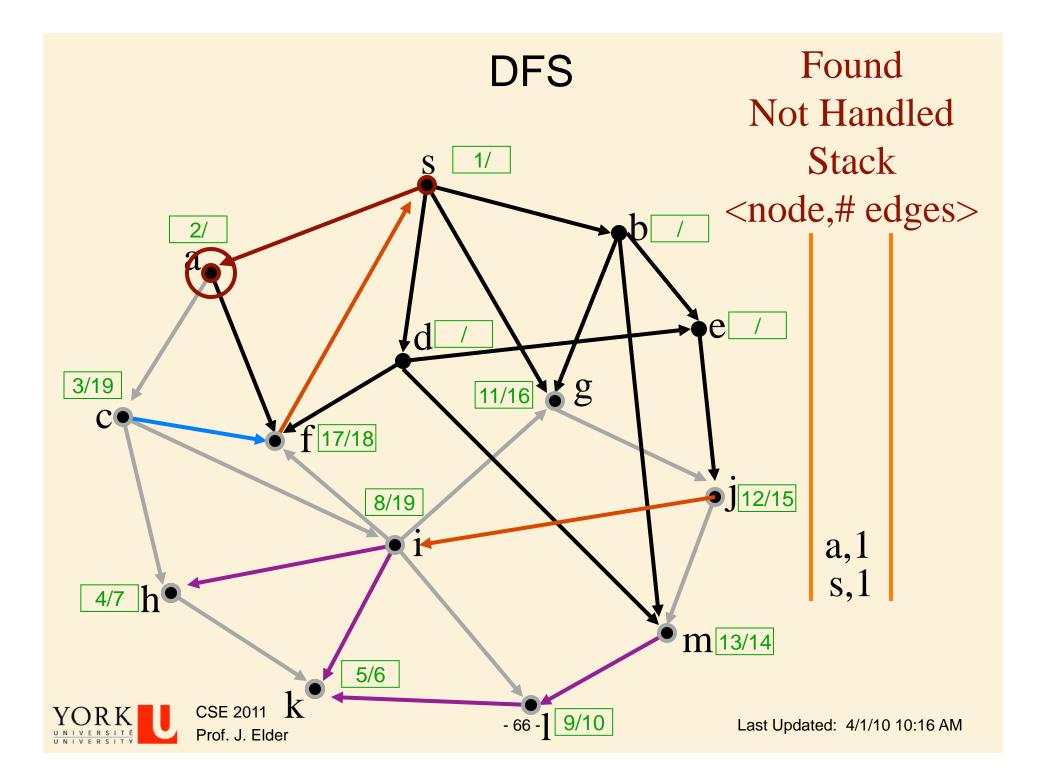


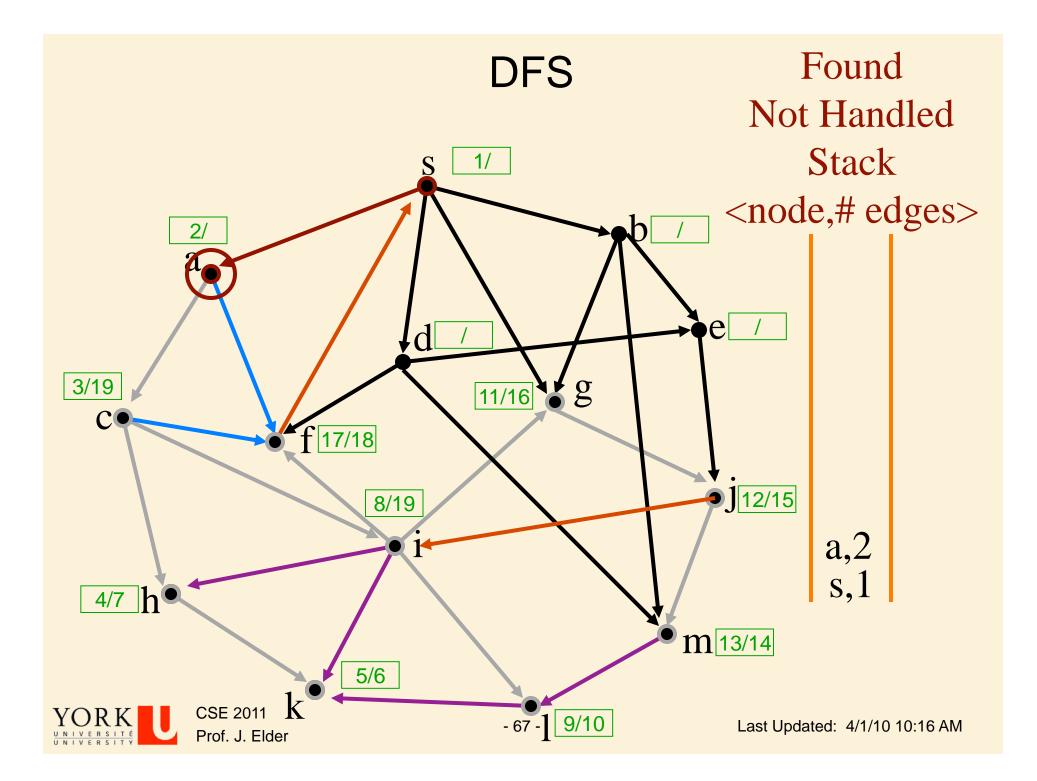


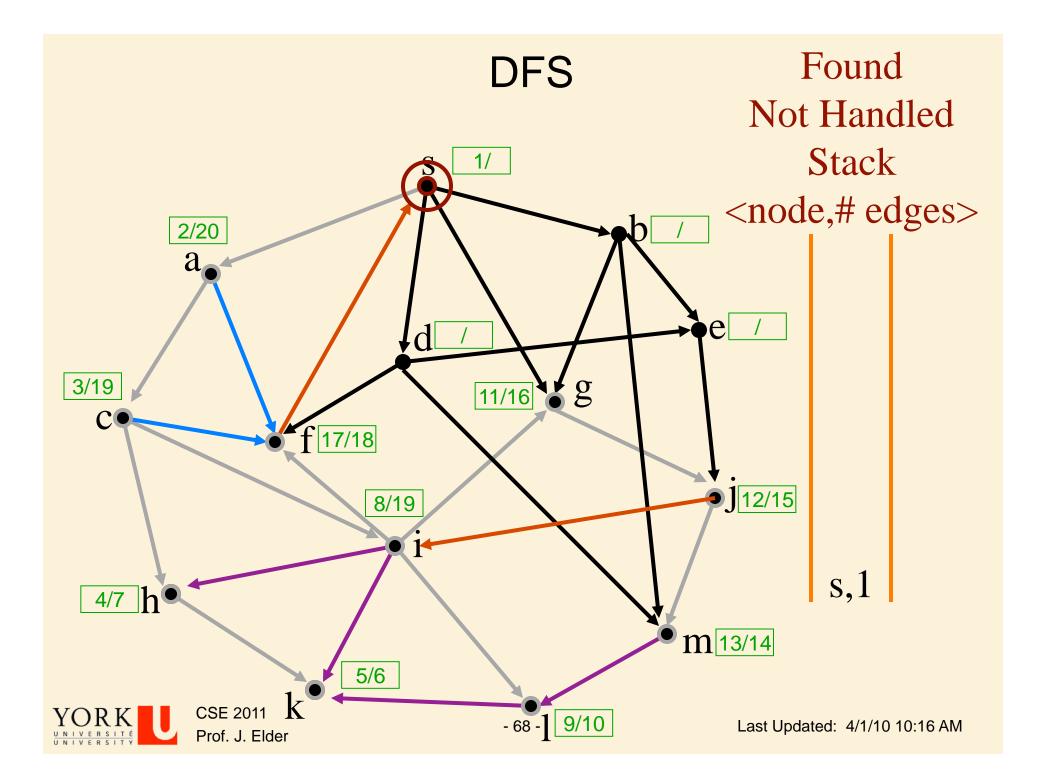


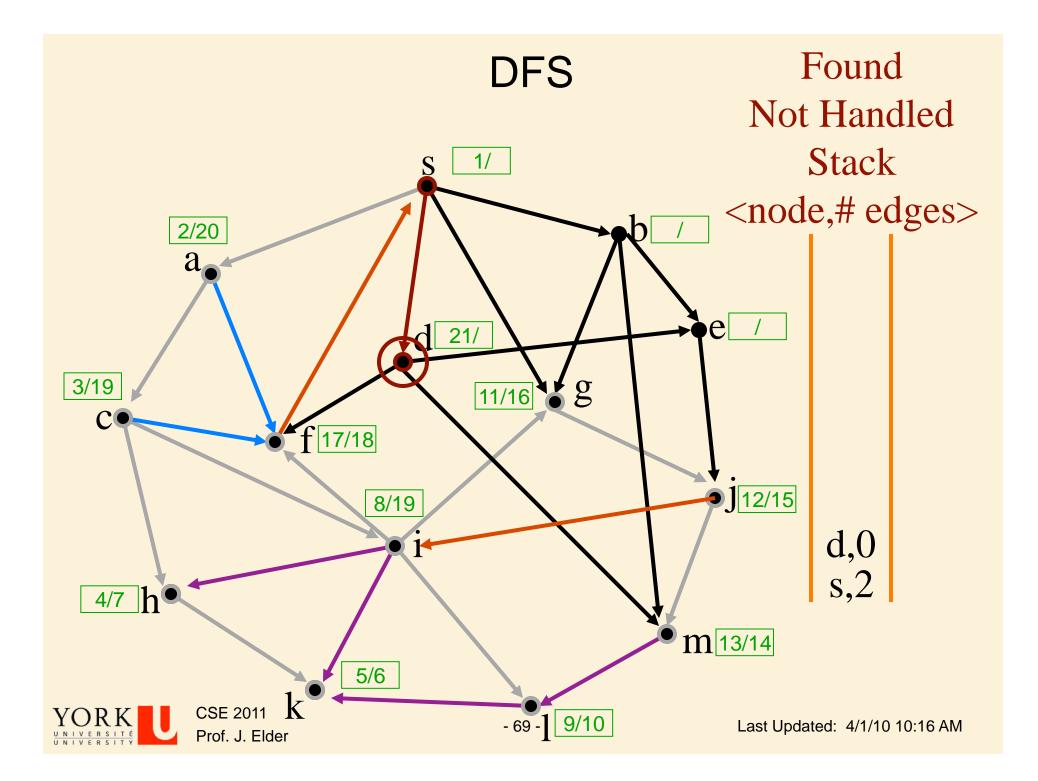


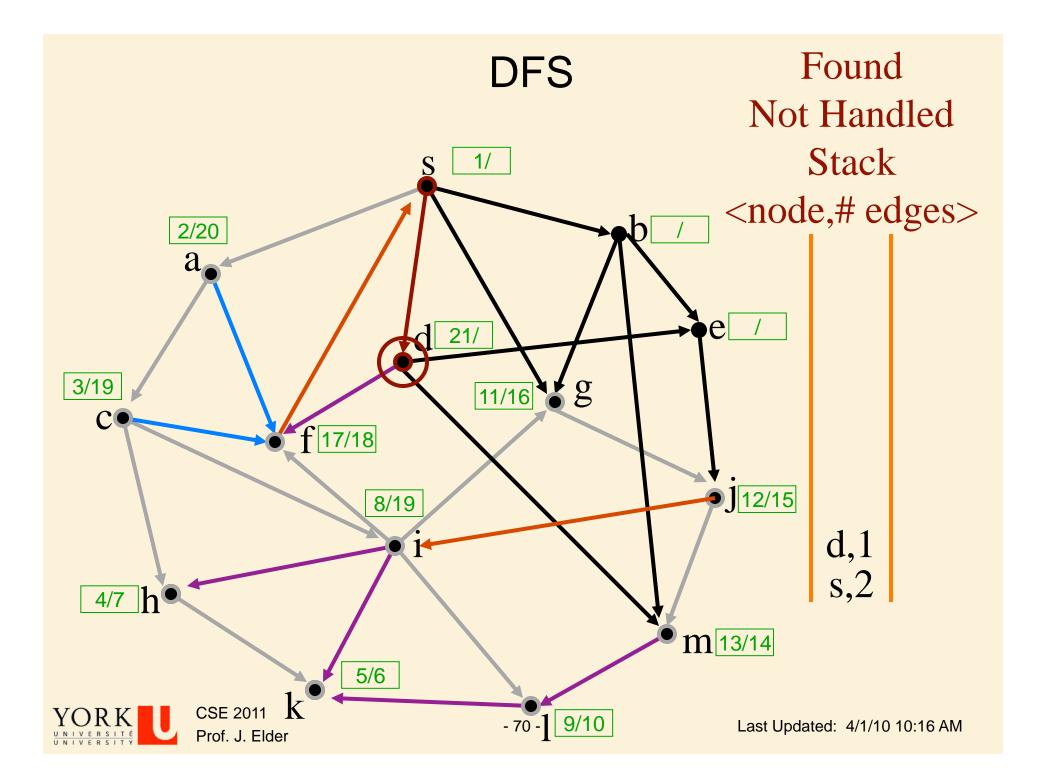


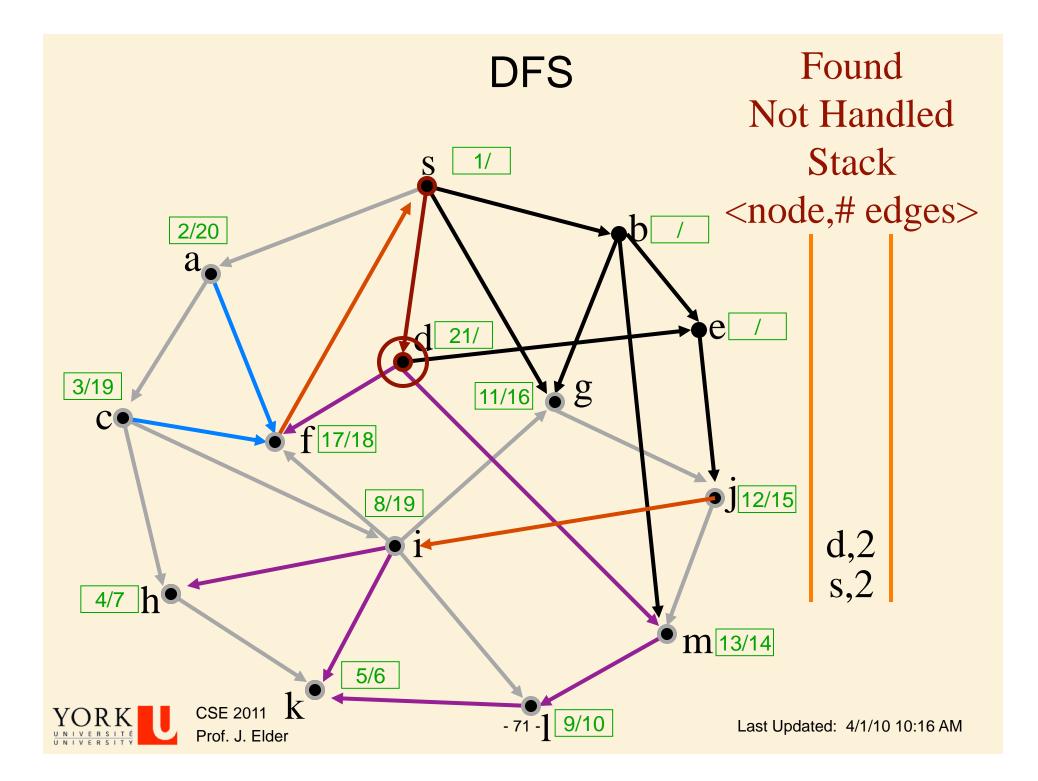


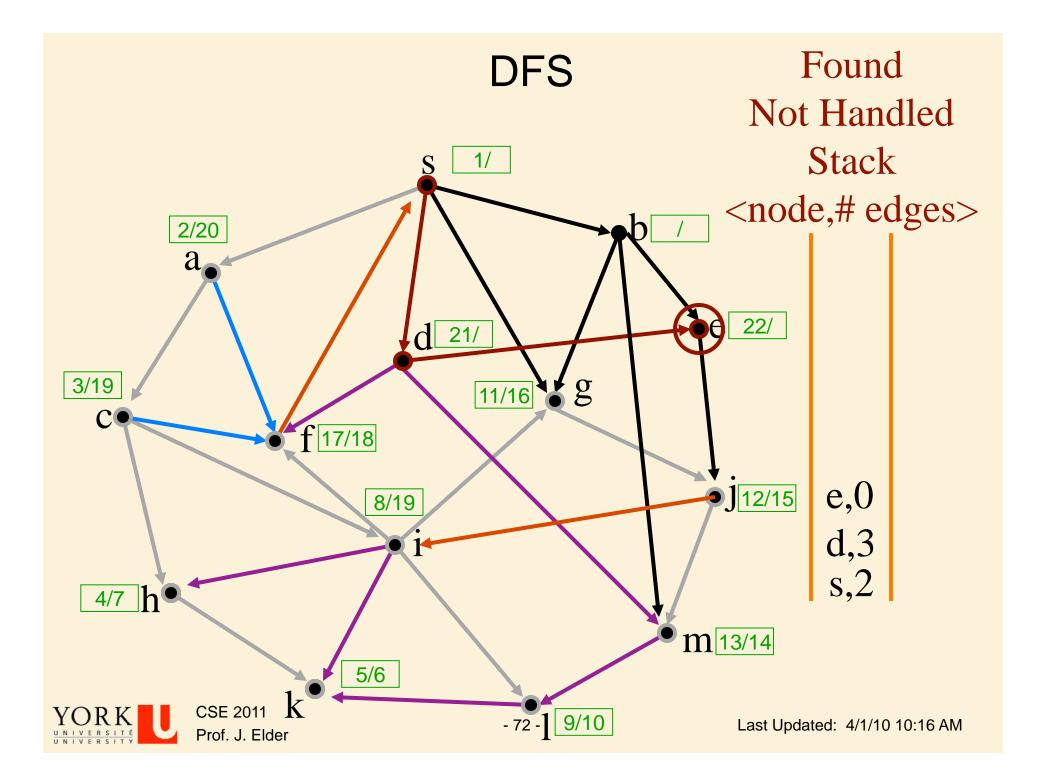


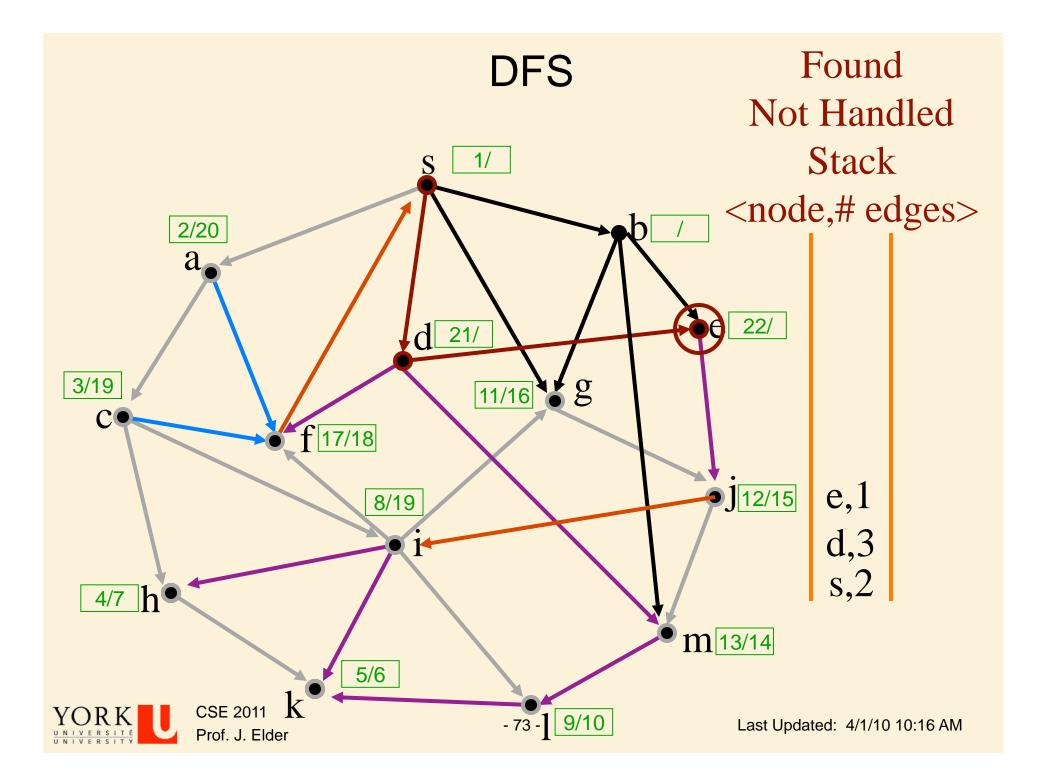


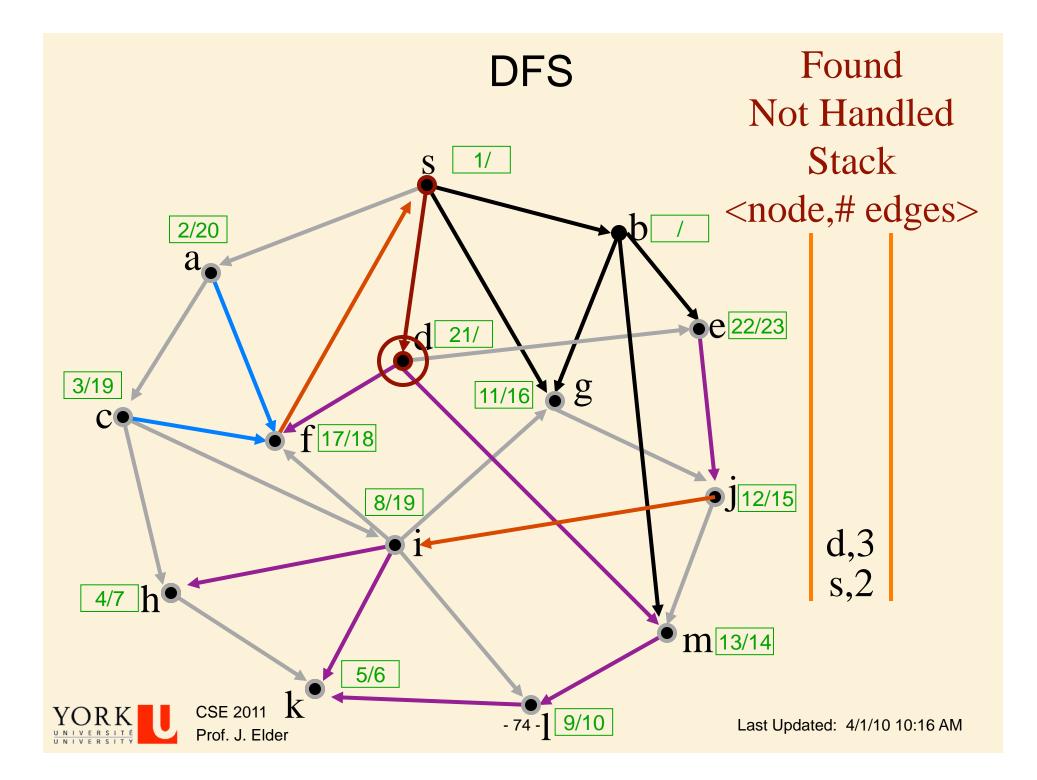


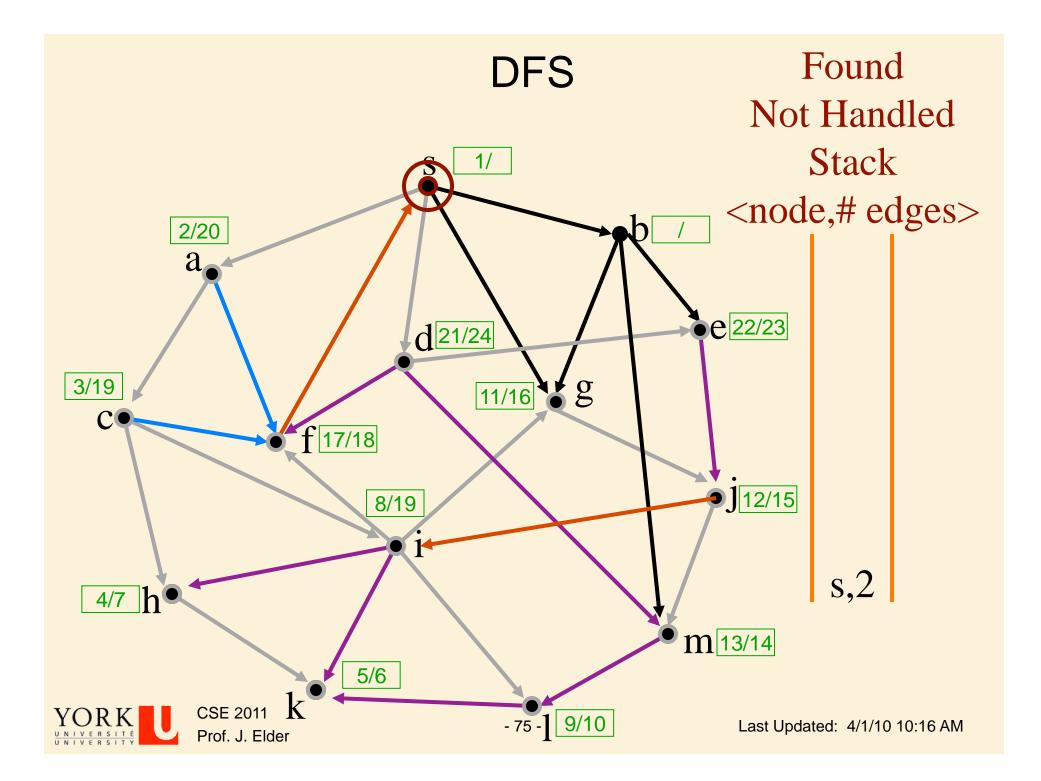


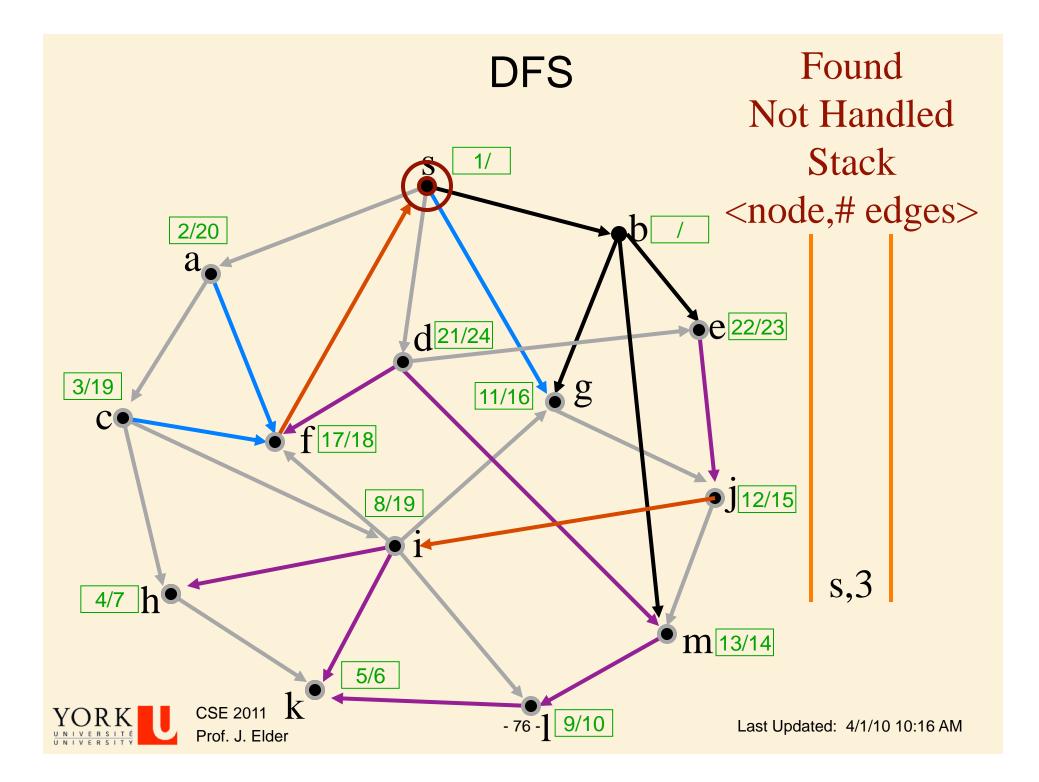


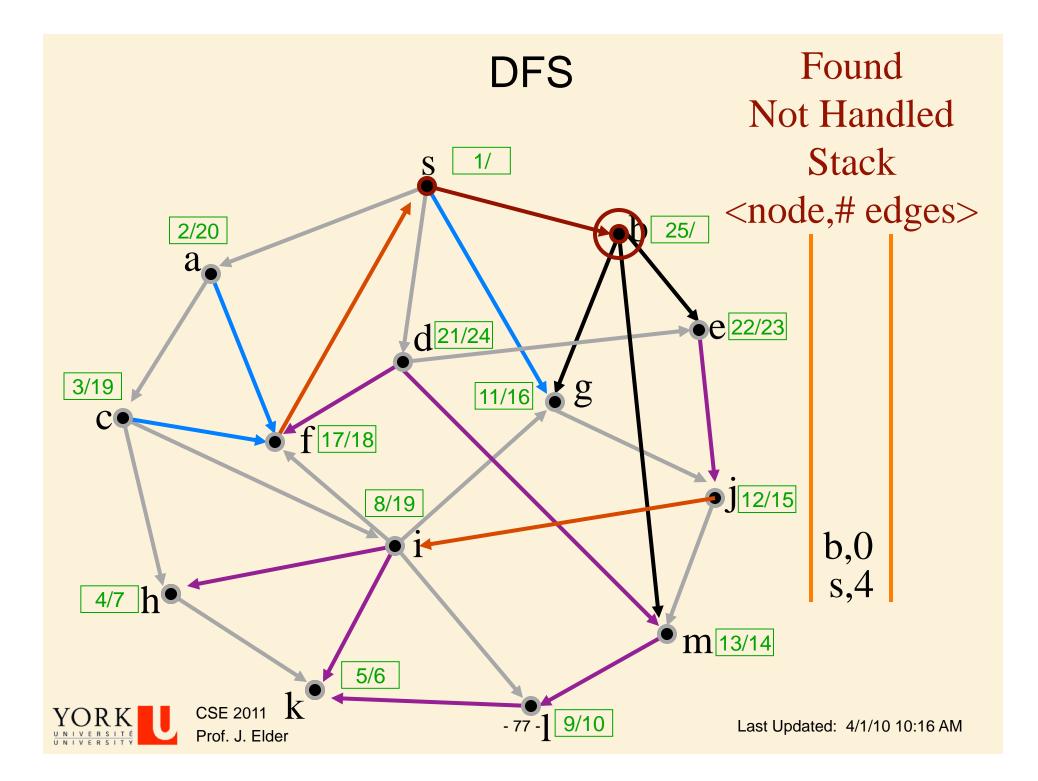


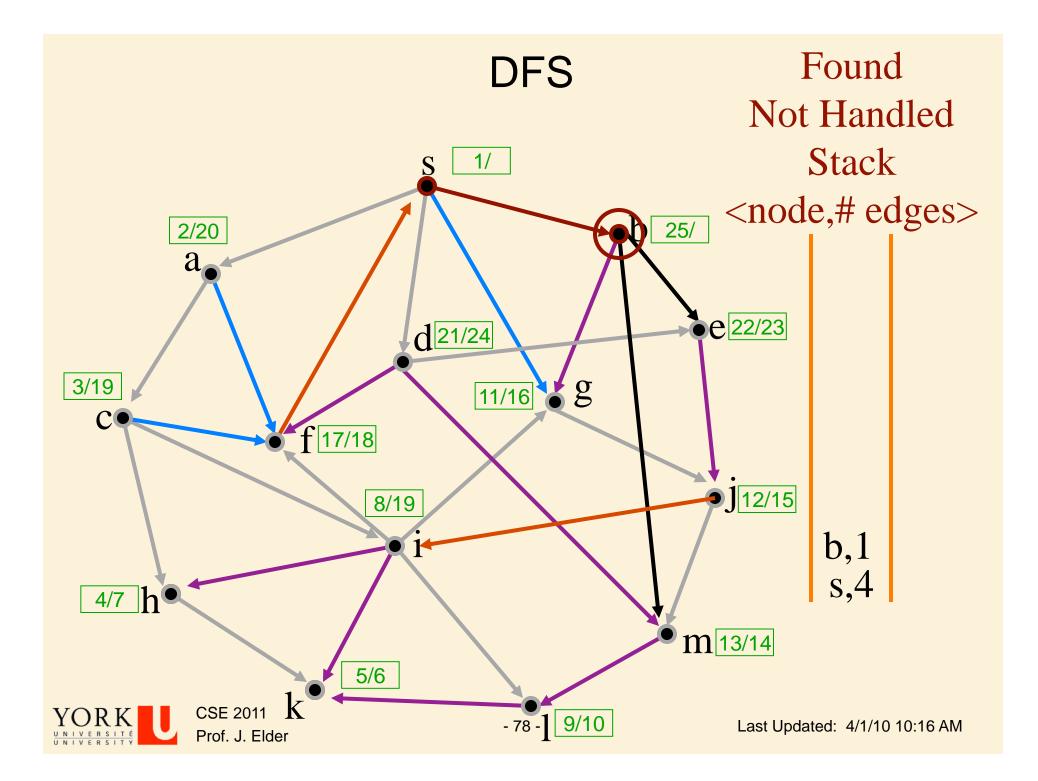


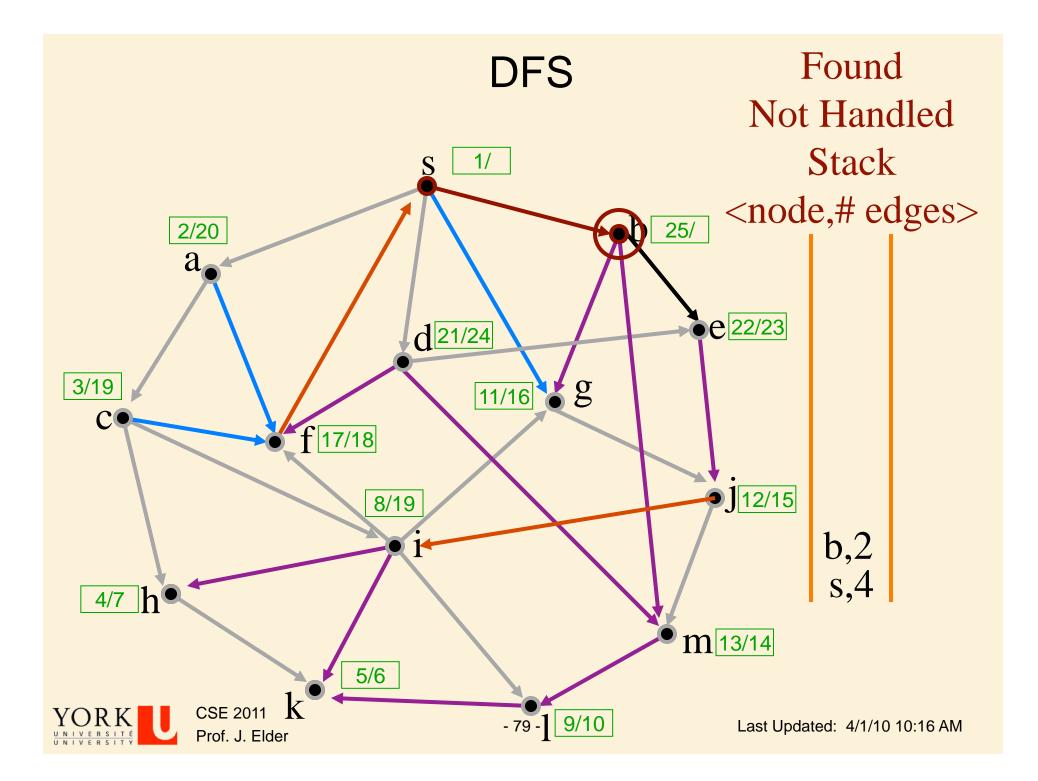


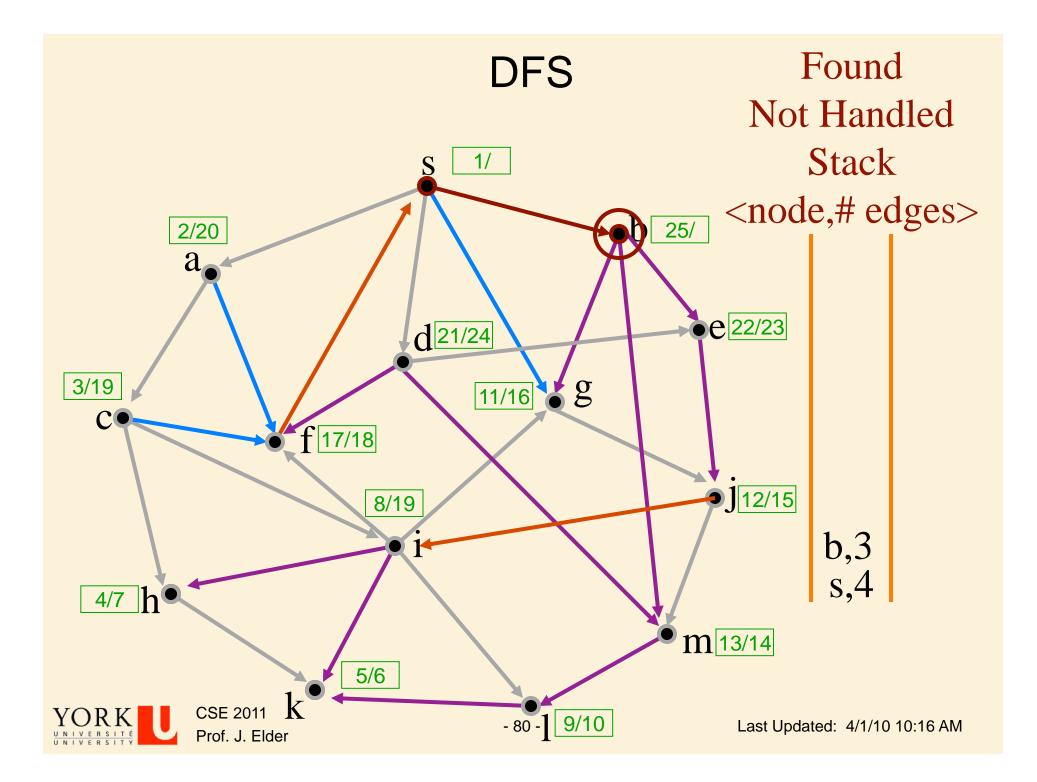


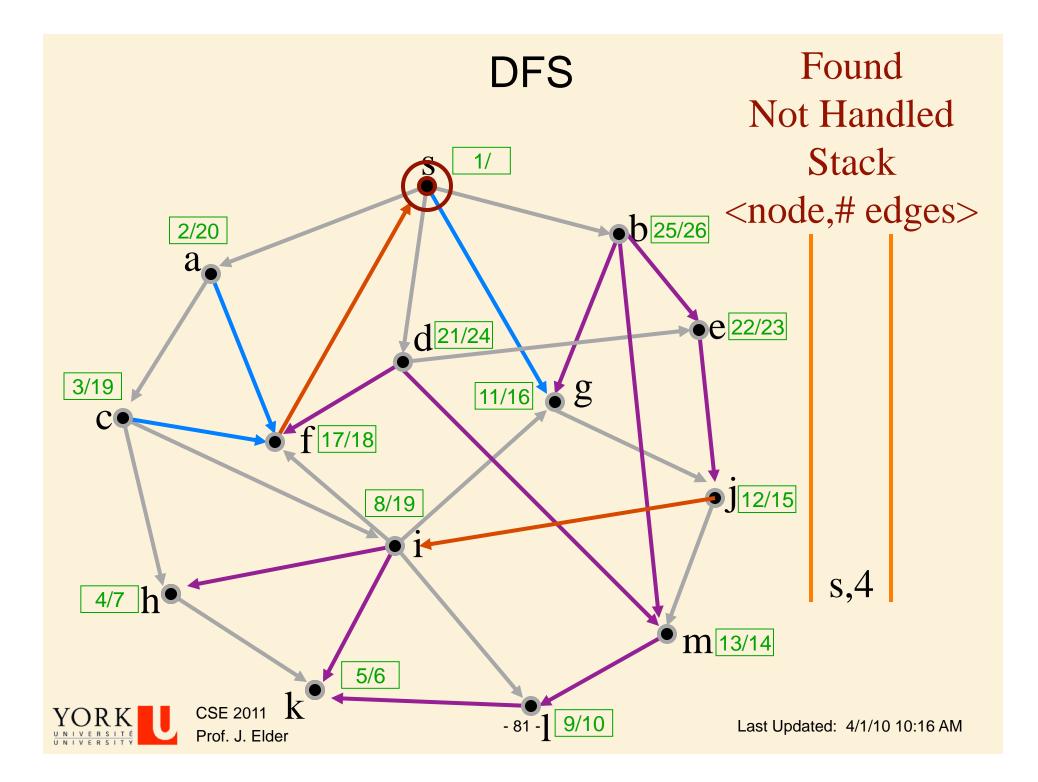


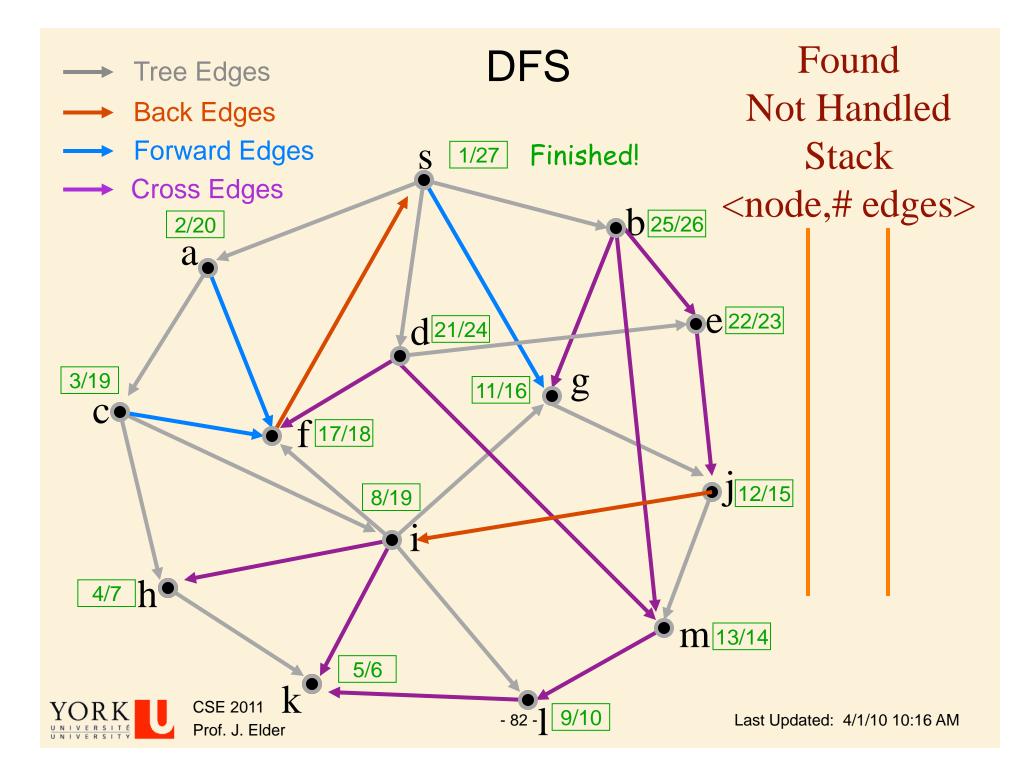






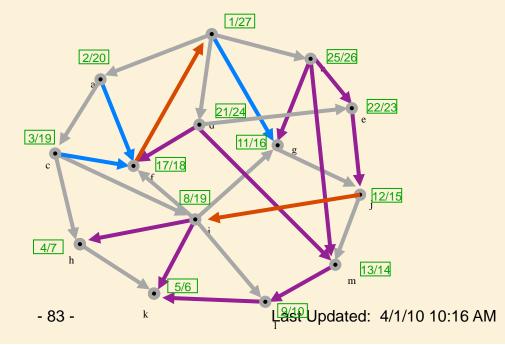






Classification of Edges in DFS

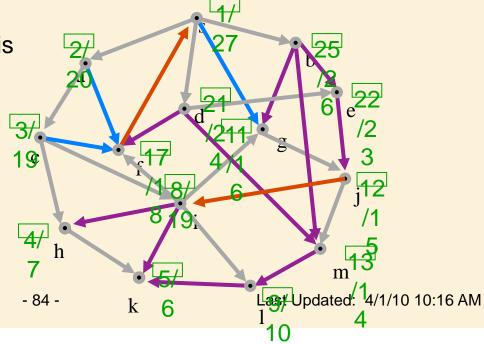
- **1.** Tree edges are edges in the depth-first forest G_{π} . Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v).
- 2. Back edges are those edges (*u*, *v*) connecting a vertex *u* to an ancestor *v* in a depth-first tree.
- **3.** Forward edges are non-tree edges (*u*, *v*) connecting a vertex *u* to a descendant *v* in a depth-first tree.
- **4. Cross edges** are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other.



Classification of Edges in DFS

- **1.** Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.
- 2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.
- **3.** Forward edges: (*u*, *v*) is a forward edge if v was gray when (*u*, *v*) traversed and *d*[*v*] > *d*[*u*].
- Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and d[v] < d[u].

Classifying edges can help to identify properties of the graph, e.g., a graph is acyclic iff DFS yields no back edges.



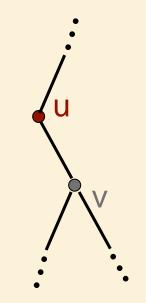
DFS on Undirected Graphs

In a depth-first search of an undirected graph, every edge is either a tree edge or a back edge.

> Why?

DFS on Undirected Graphs

- Suppose that (u,v) is a forward edge or a cross edge in a DFS of an undirected graph.
- (u,v) is a forward edge or a cross edge when v is already handled (grey) when accessed from u.
- This means that all vertices reachable from v have been explored.
- Since we are currently handling **u**, **u** must be **red**.
- Clearly v is reachable from u.
- Since the graph is undirected, u must also be reachable from v.
- Thus u must already have been handled: u must be grey.
- Contradiction!



Applications of Depth-First Search

DFS Application 1: Path Finding

- > The DFS pattern can be used to find a path between two given vertices u and z, if one exists
- ➢ We use a stack to keep track of the current path
- > If the destination vertex z is encountered, we return the path as the contents of the stack

```
DFS-Path (u, z)

Precondition: u and z are vertices in a graph

Postcondition: a path from u to z is returned, if one exists

colour[u] \leftarrow RED

push u onto stack

if u = z

return list of elements on stack

for each v \in \text{Adj}[u] //explore edge (u, v)

if color[v] = BLACK

DFS-Path(v, z)

colour[u] \leftarrow GRAY

pop u from stack
```


DFS Application 2: Cycle Finding

- > The DFS pattern can be used to find a cycle in a graph, if one exists
- We use a stack to keep track of the current path
- If a back edge is encountered, we return the cycle as the contents of the stack

```
DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: a cycle reachable from u is returned, of one exists
        colour[u] \leftarrow RED
        push u onto stack
        for each v \in \operatorname{Adj}[u] //explore edge (u, v)
               if color[v] = RED //back edge
                       return list of elements on stack
               else if color[v] = BLACK
                       DFS-Cycle(v)
        colour[u] \leftarrow GRAY
        pop u from stack
```


DFS Application 3. Topological Sorting (e.g., putting tasks in linear order)

Note: This topological sorting algorithm is different from the TopologicalSort algorithm given on p.617 of the textbook

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

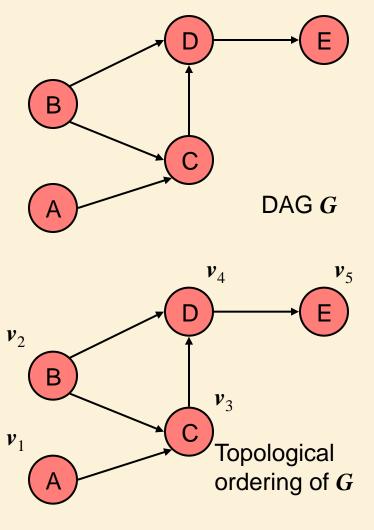
*v*₁, ..., *v*_n

of the vertices such that for every edge (v_i, v_j) , we have i < j

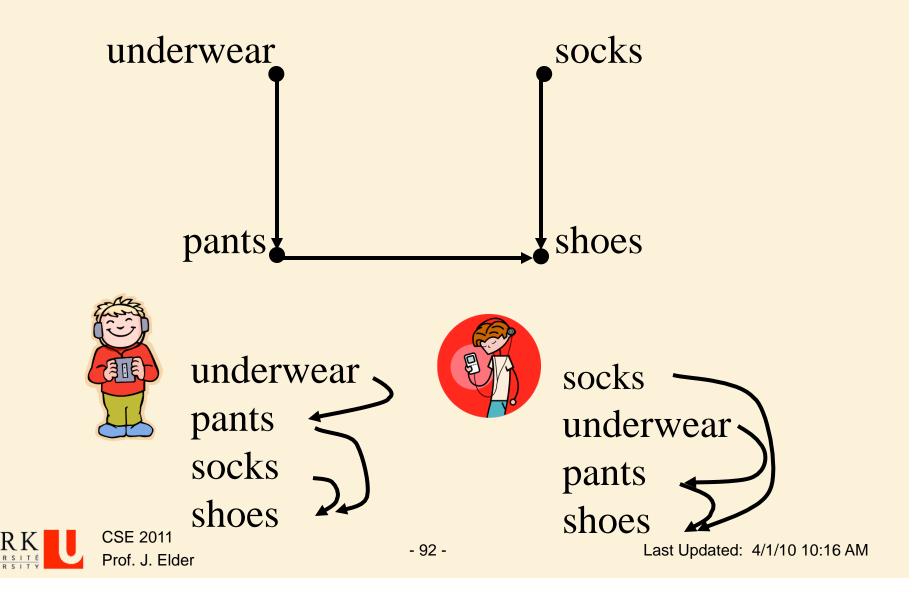
Example: in a task scheduling digraph, a topological ordering is a task sequence that satisfies the precedence constraints

Theorem

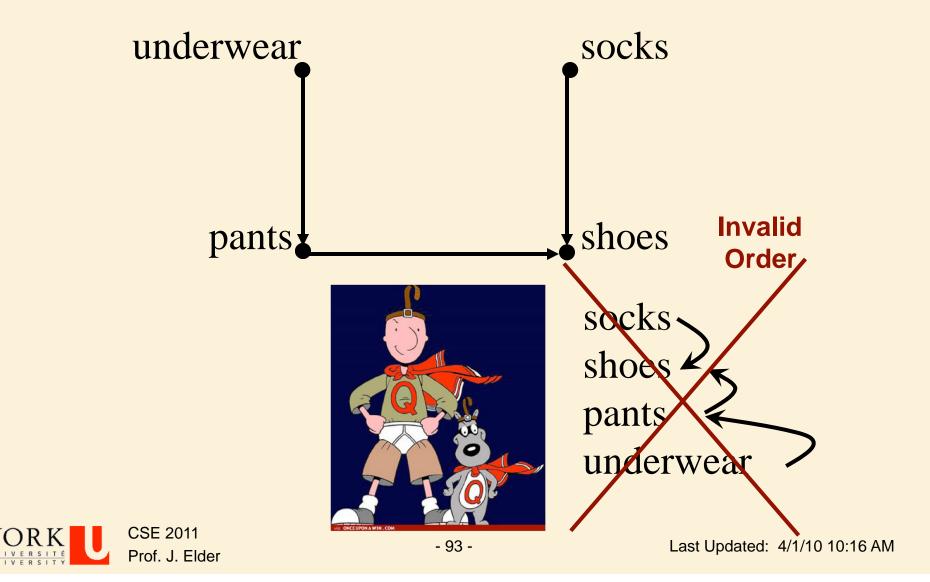
A digraph admits a topological ordering if and only if it is a DAG



Topological (Linear) Order



Topological (Linear) Order

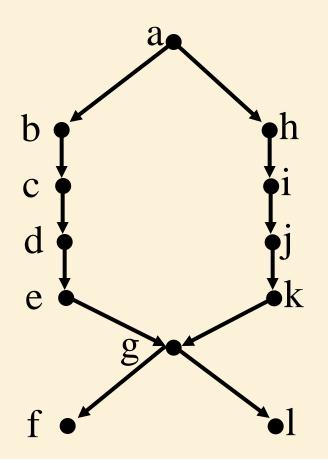


Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia

Method TopologicalSort(G) $H \notin G$ // Temporary copy of G $n \notin G.numVertices()$ while H is not empty do Let v be a vertex with no outgoing edges Label $v \notin n$ $n \notin n-1$ Remove v from H //as well as edges involving v

Linear Order



Pre-Condition: A Directed Acyclic Graph (DAG)

Post-Condition: Find one valid linear order

Algorithm:

- •Find a terminal node (sink).
- •Put it last in sequence.
- •Delete from graph & repeat

Running time: $\sum_{i=1}^{|V|} i = O(|V|^2)$

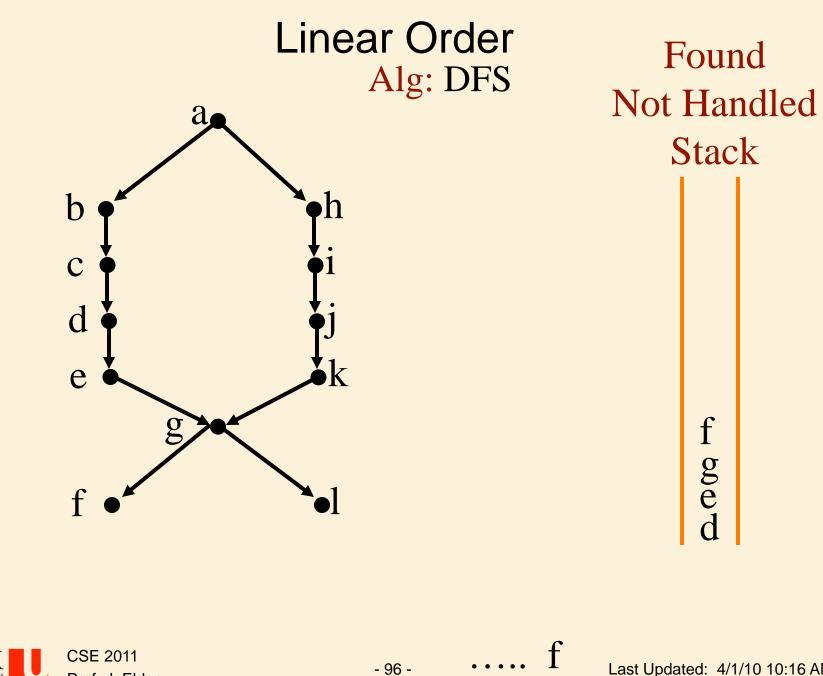
1 Can we do better?

Last Updated: 4/1/10 10:16 AM

O(|V|)

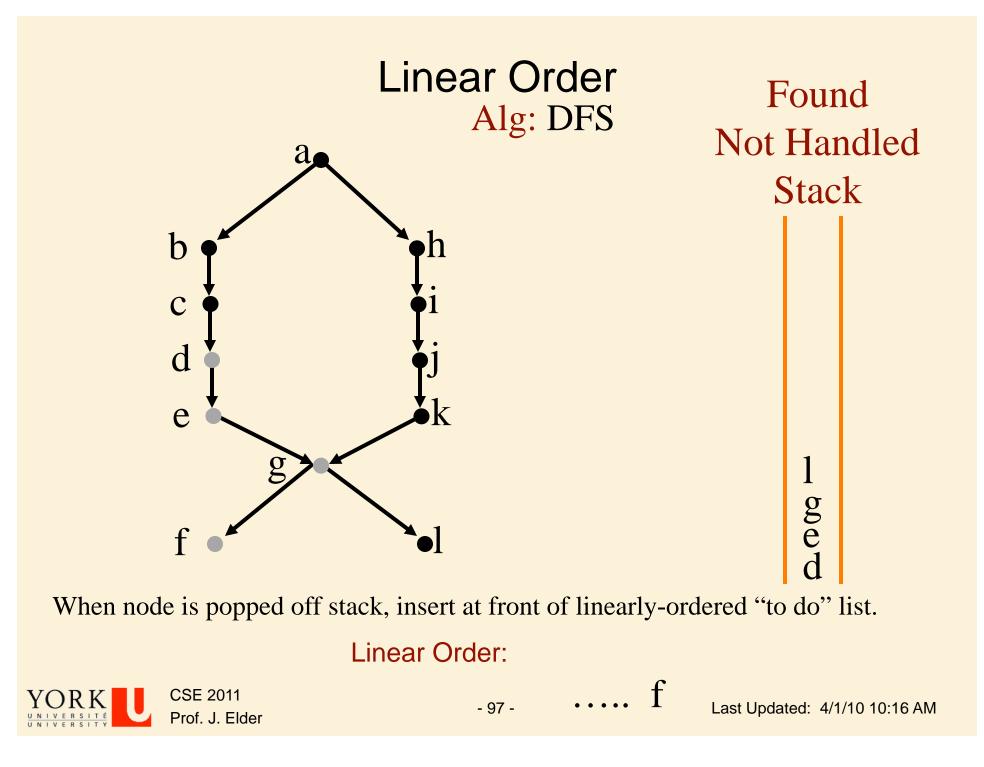
CSE 2011 Prof. J. Elder

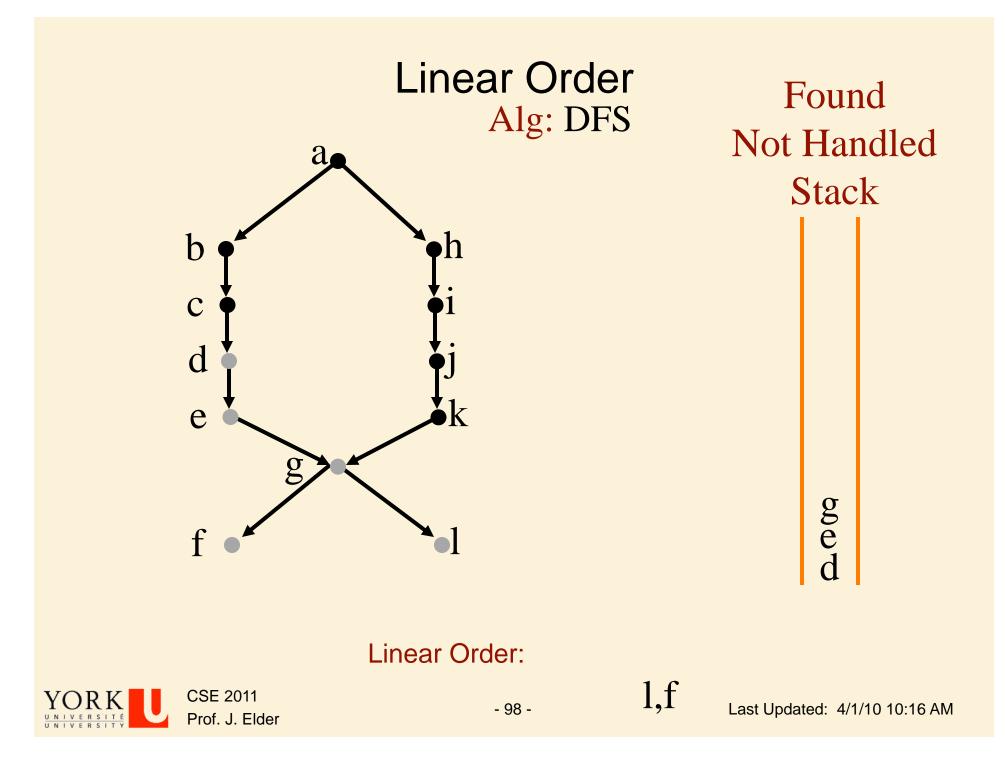
- 95 -

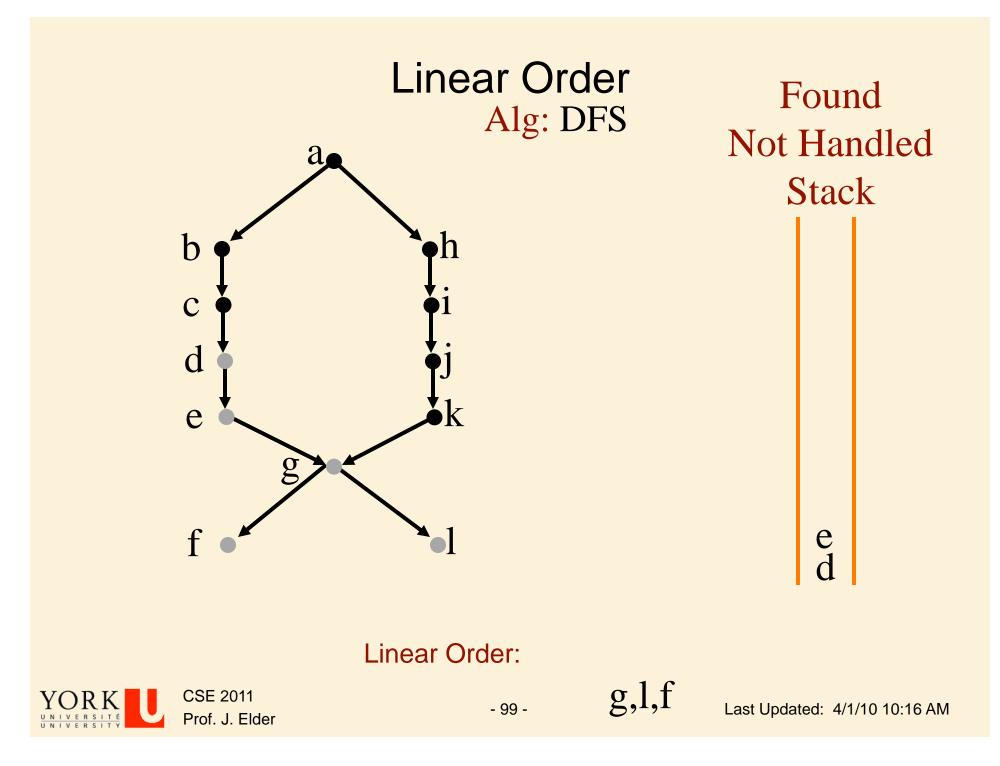


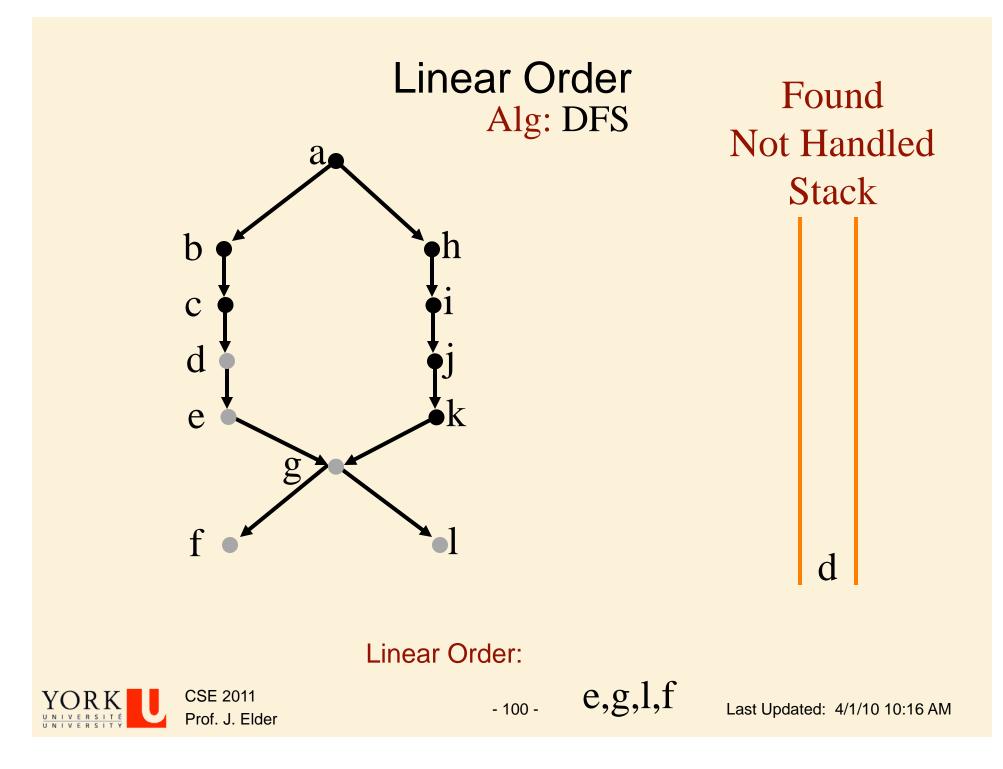
CSE 2011) R K Prof. J. Elder

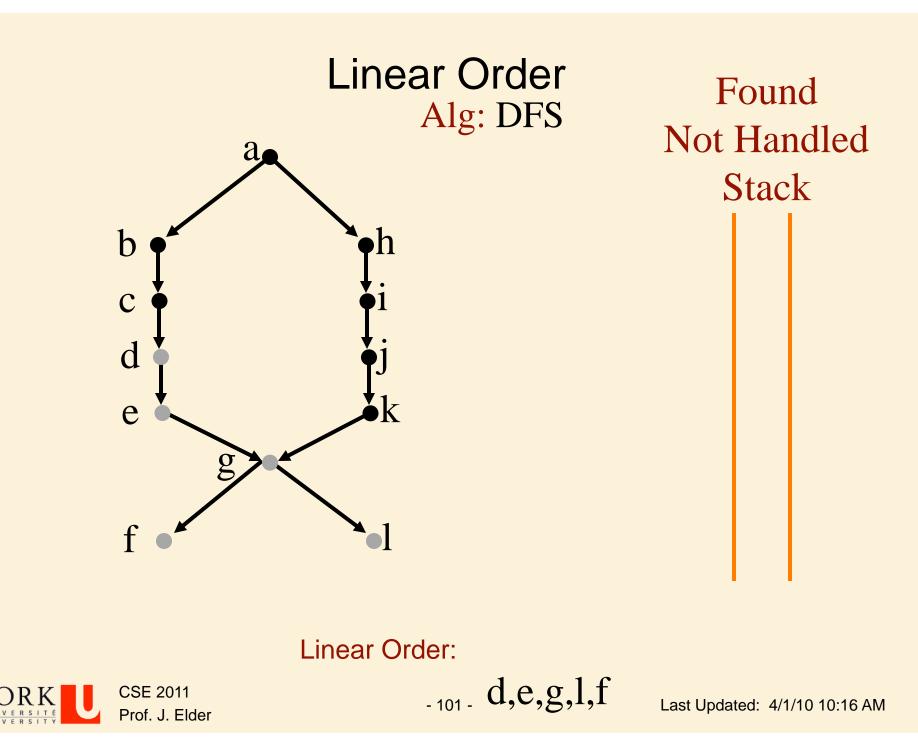
Last Updated: 4/1/10 10:16 AM

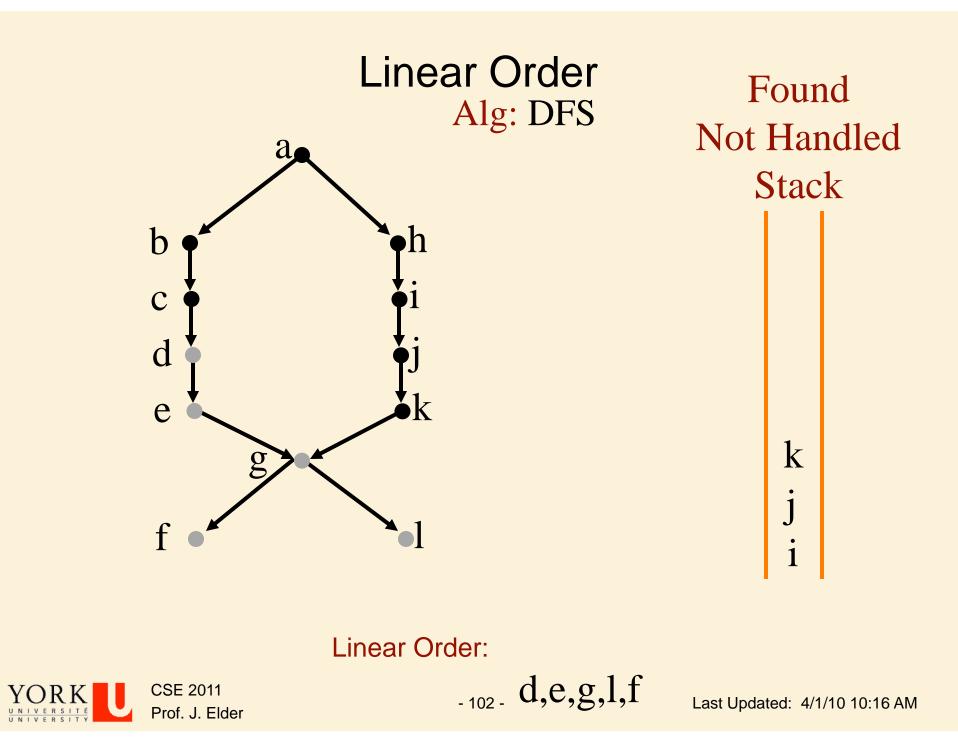


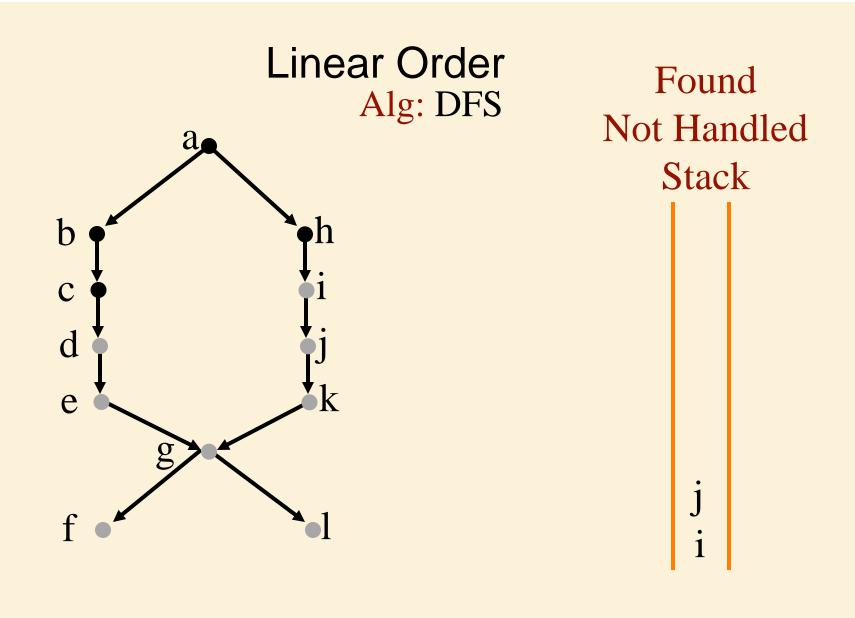






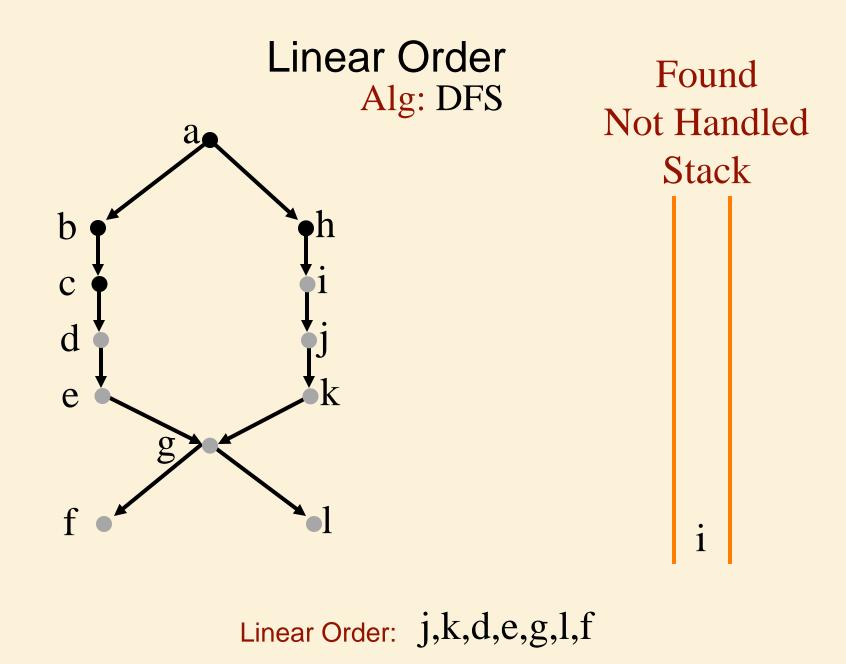


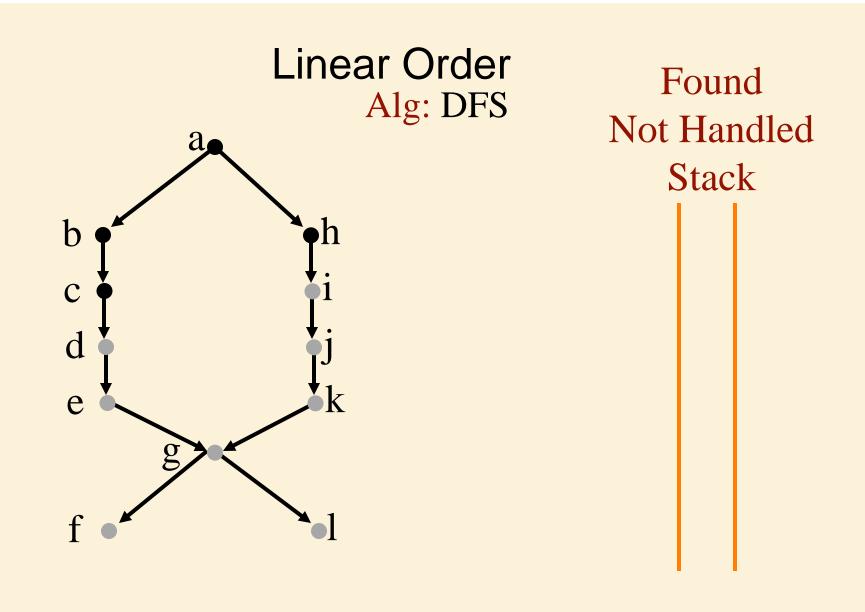




Linear Order: k,d,e,g,l,f

Prof. J. Elder

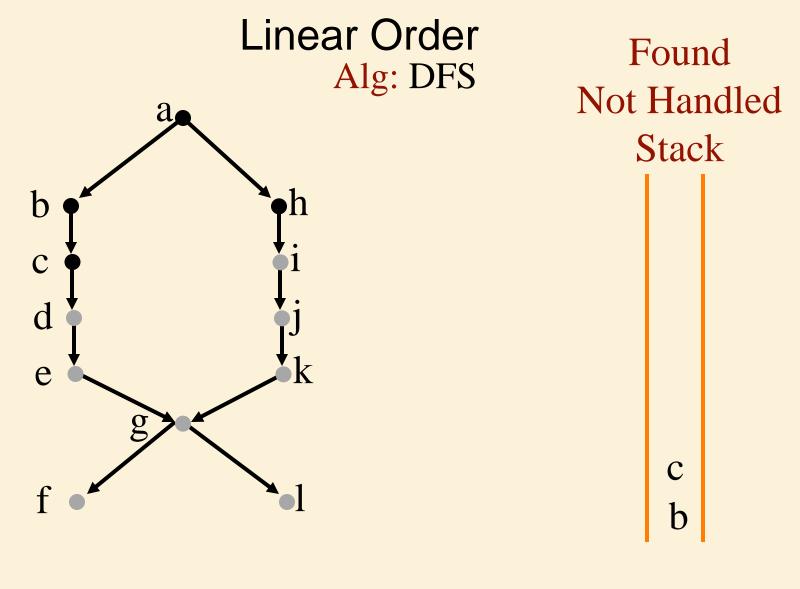




Linear Order: i,j,k,d,e,g,l,f

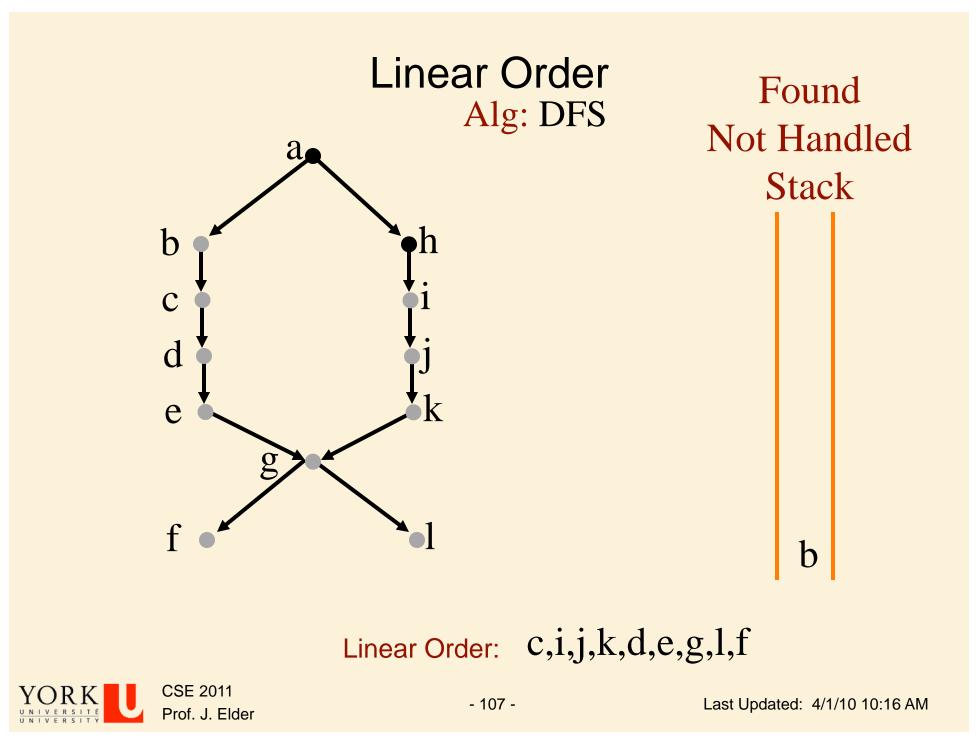
CSE 2011 Prof. J. Elder

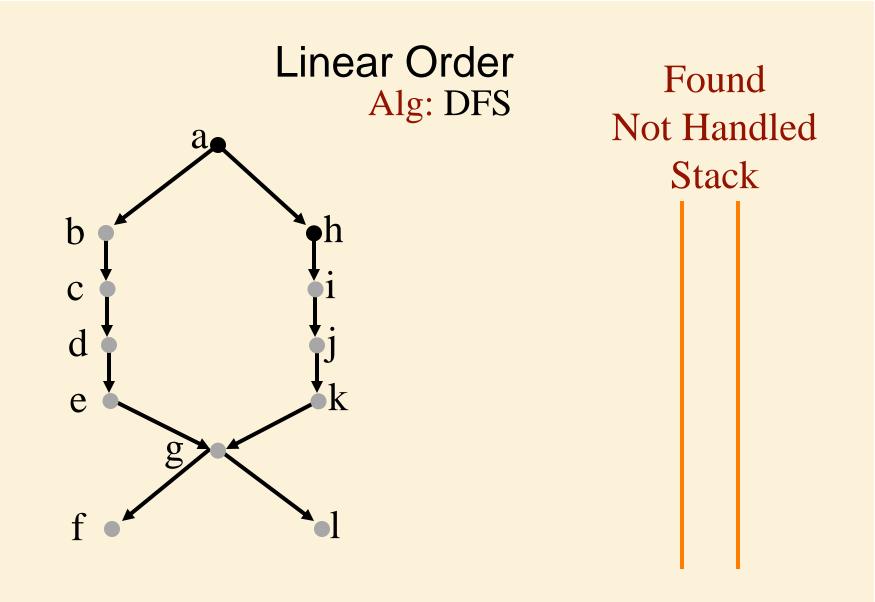
Last Updated: 4/1/10 10:16 AM



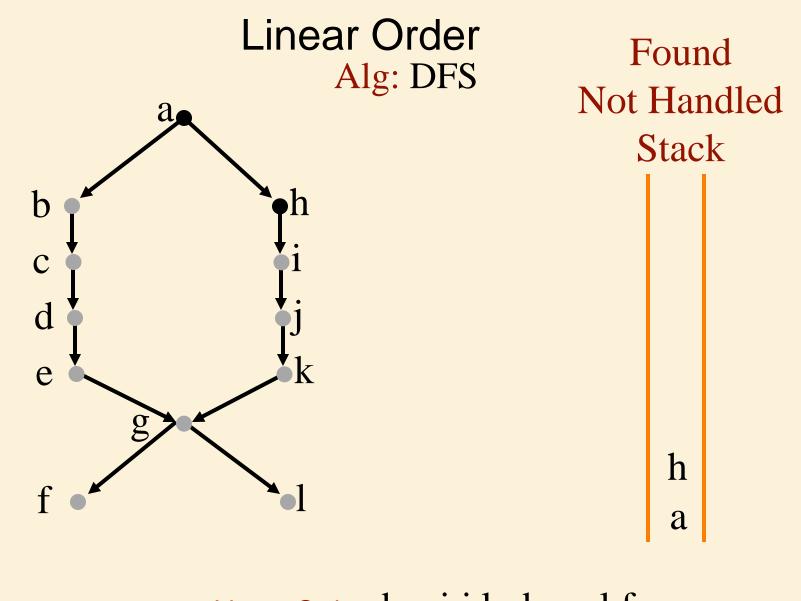
Linear Order: i,j,k,d,e,g,l,f

CSE 2011 Prof. J. Elder

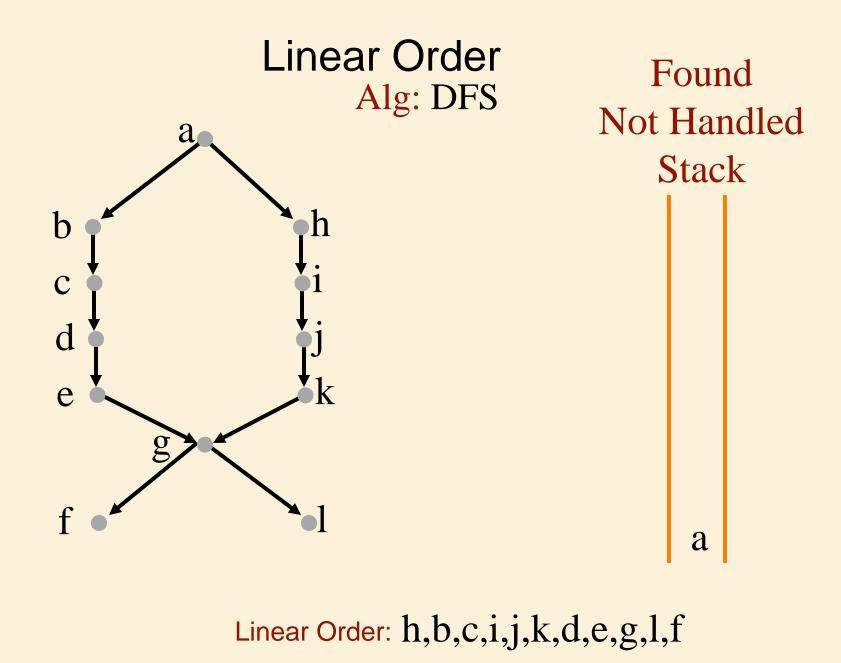




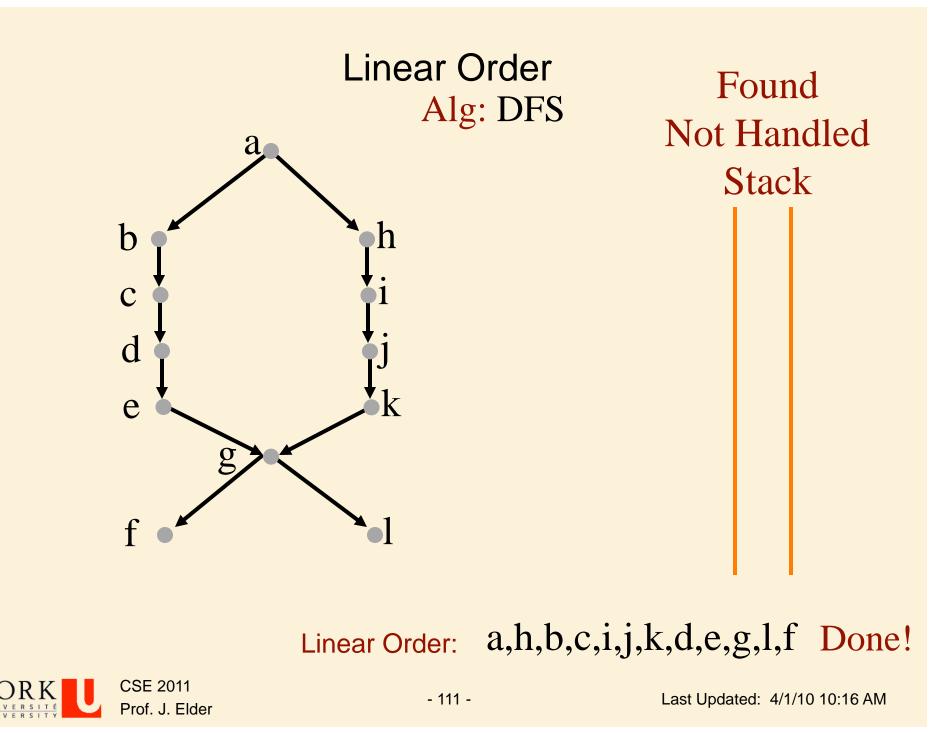
Linear Order: b,c,i,j,k,d,e,g,l,f



Linear Order: b,c,i,j,k,d,e,g,l,f



Last Updated: 4/1/10 10:16 AM



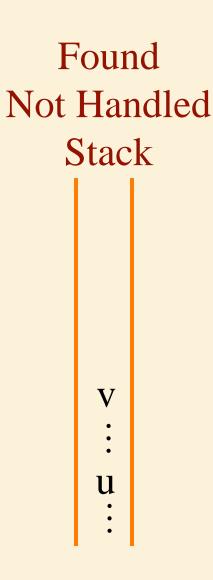
DFS Algorithm for Topologial Sort

> Makes sense. But how do we prove that it works?

Linear Order

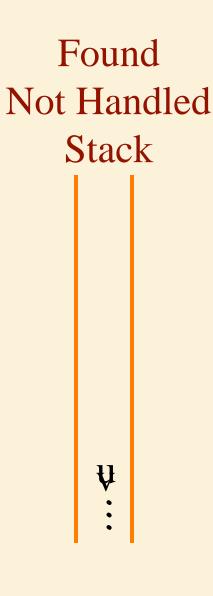
Proof: Consider each edge
Case 1: u goes on stack first before v.
Because of edge,

v goes on before u comes off
v comes off before u comes off
v goes after u in order. ^(C)



Linear Order

Proof: Consider each edge
Case 1: u goes on stack first before v.
Case 2: v goes on stack first before u. v comes off before u goes on.
v goes after u in order. ☺



CSE 2011 Prof. J. Elder - 114 - **U**...V...

Linear Order

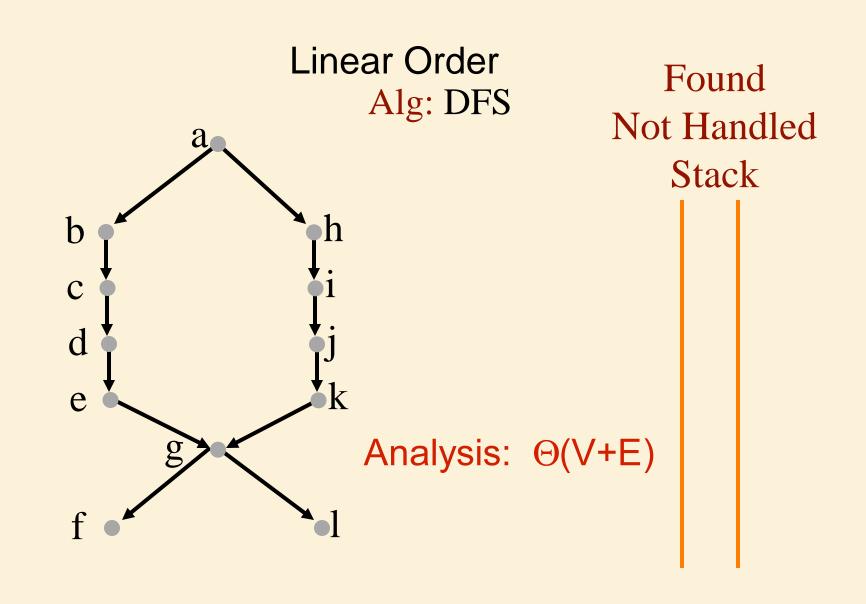
Proof: Consider each edge
•Case 1: u goes on stack first before v.
•Case 2: v goes on stack first before u. v comes off before u goes on.
Case 3: v goes on stack first before u. u goes on before v comes off.
•Panic: u goes after v in order. ☺
•Cycle means linear order
is impossible ☺

Found Not Handled Stack u

The nodes in the stack form a path starting at s.

110

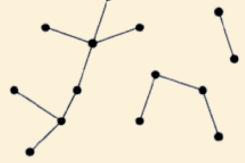
- 115 - V...u...



Linear Order: a,h,b,c,i,j,k,d,e,g,l,f Done!

DFS Application 3. Topological Sort

Topological-Sort(G) Precondition: G is a graph Postcondition: all vertices in G have been pushed onto stack in reverse linear order for each vertex $u \in V[G]$ color[u] = BLACK //initialize vertex for each vertex $u \in V[G]$ if color[u] = BLACK //as yet unexplored Topological-Sort-Visit(*u*)



DFS Application 3. Topological Sort Topological-Sort-Visit (u) Precondition: vertex *u* is undiscovered Postcondition: u and all vertices reachable from u have been pushed onto stack in reverse linear order $colour[u] \leftarrow RED$ for each $v \in \operatorname{Adj}[u]$ //explore edge (u, v)if color[v] = BLACKTopological-Sort-Visit(v) push *u* onto stack $colour[u] \leftarrow GRAY$

Breadth-First Search

Breadth-First Search

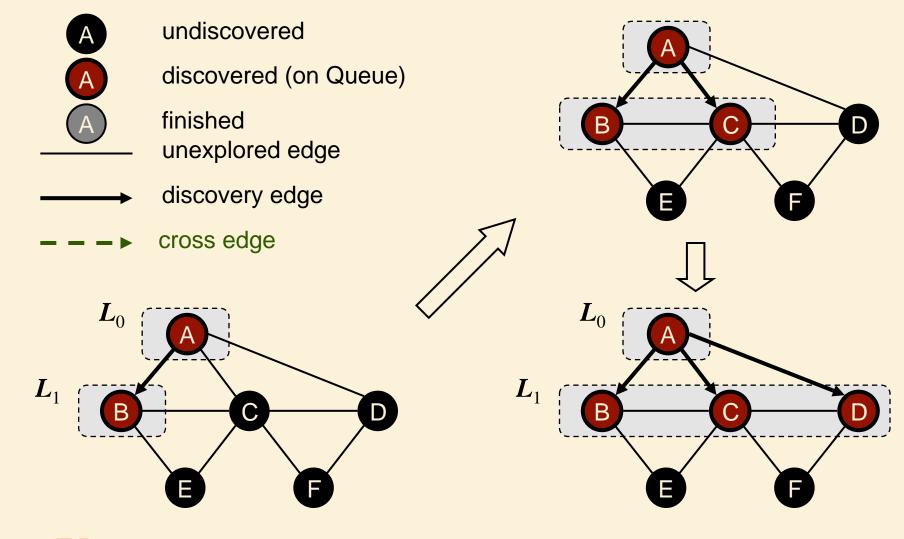
- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- \succ BFS on a graph with /V/ vertices and /E/ edges takes O(/V/+/E/) time
- BFS can be further extended to solve other graph problems
 - □ Find and report a path with the minimum number of edges between two given vertices
 - □ Find a simple cycle, if there is one

BFS Algorithm Pattern

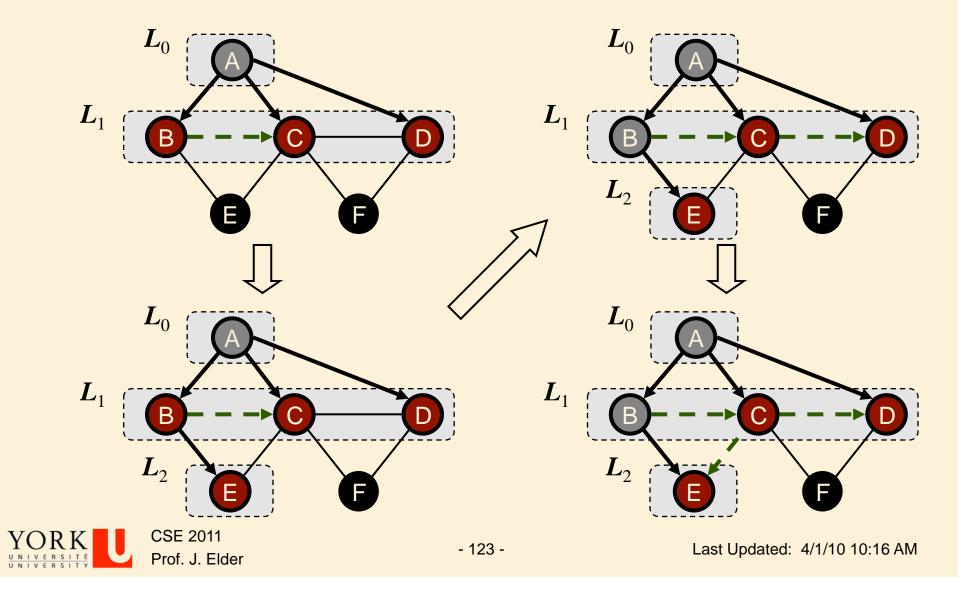
```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
        for each vertex u \in V[G]
                color[u] ← BLACK //initialize vertex
        colour[s] \leftarrow RED
        Q.enqueue(s)
        while \mathbf{Q} \neq \emptyset
                u \leftarrow Q.dequeue()
                 for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                         if color[v] = BLACK
                                 colour[v] \leftarrow RED
                                 Q.enqueue(v)
                 colour[u] \leftarrow GRAY
```


CSE 2011 Prof. J. Elder

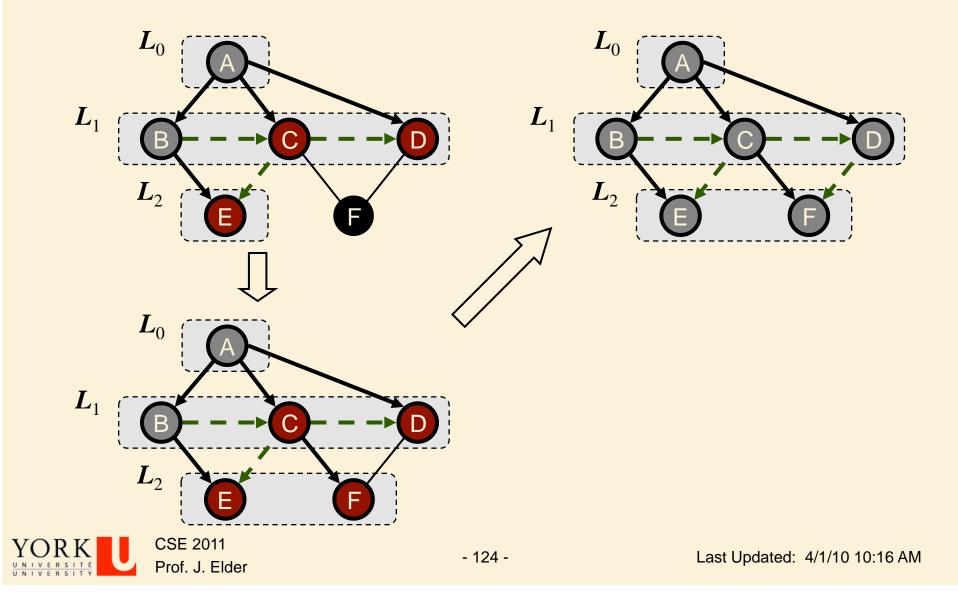
BFS Example



BFS Example (cont.)



BFS Example (cont.)



Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

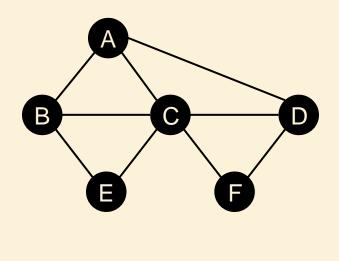
Property 2

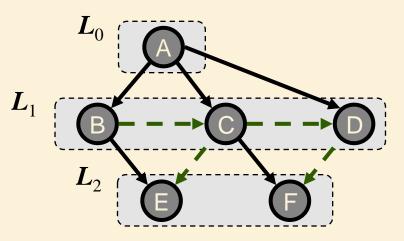
The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- $\Box The path of T_s from s to v has i edges$
- Every path from s to v in G_s has at least *i* edges





Analysis

- \succ Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled three times
 - once as BLACK (undiscovered)

once as RED (discovered, on queue)

□ once as GRAY (finished)

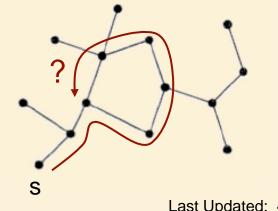
- \succ Each edge is considered twice (for an undirected graph)
- \succ Each vertex is inserted once into a sequence L_i
- \succ Thus BFS runs in O(/V/+/E/) time provided the graph is represented by an adjacency list structure

Applications

- > BFS traversal can be specialized to solve the following problems in O(/V/+/E/) time:
 - \Box Compute the connected components of G
 - \Box Compute a spanning forest of G
 - \Box Find a simple cycle in G, or report that G is a forest
 - Given two vertices of *G*, find a path in *G* between them with the minimum number of edges, or report that no such path exists

Application: Shortest Paths on an Unweighted Graph

- Goal: To recover the shortest paths from a source node s to all other reachable nodes v in a graph.
 - □ The length of each path and the paths themselves are returned.
- > Notes:
 - There are an exponential number of possible paths
 - Analogous to level order traversal for graphs
 - This problem is harder for general graphs than trees because of cycles!



Breadth-First Search

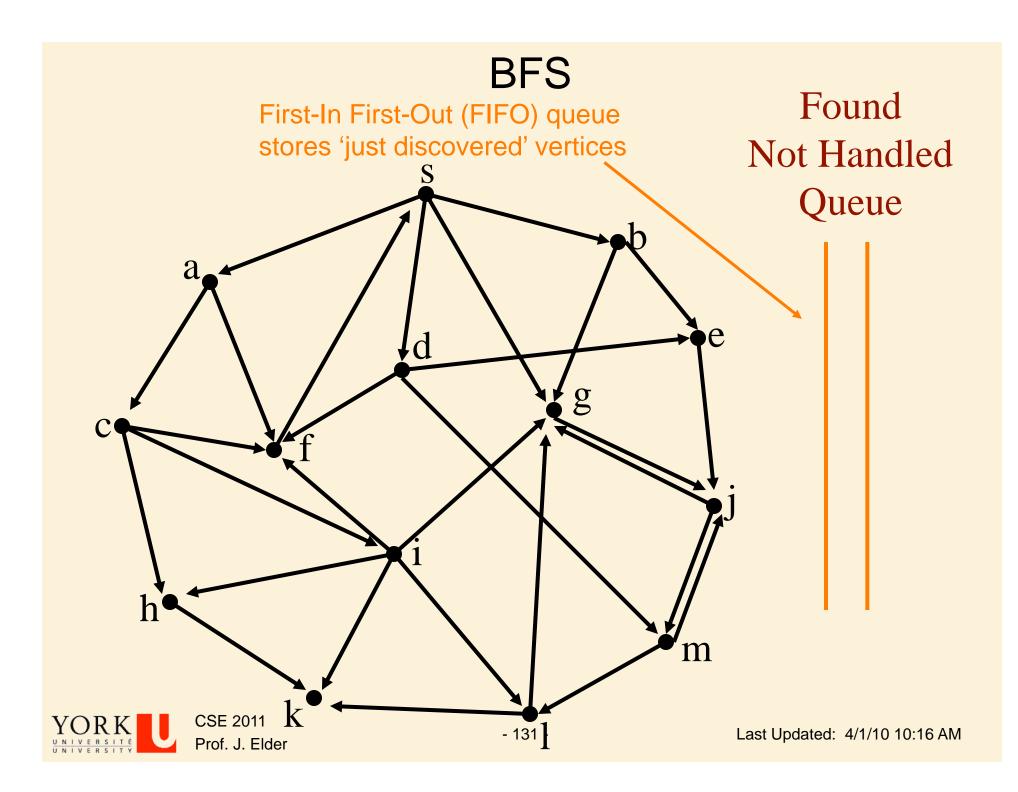
Input: Graph G = (V, E) (directed or undirected) and source vertex $s \in V$.

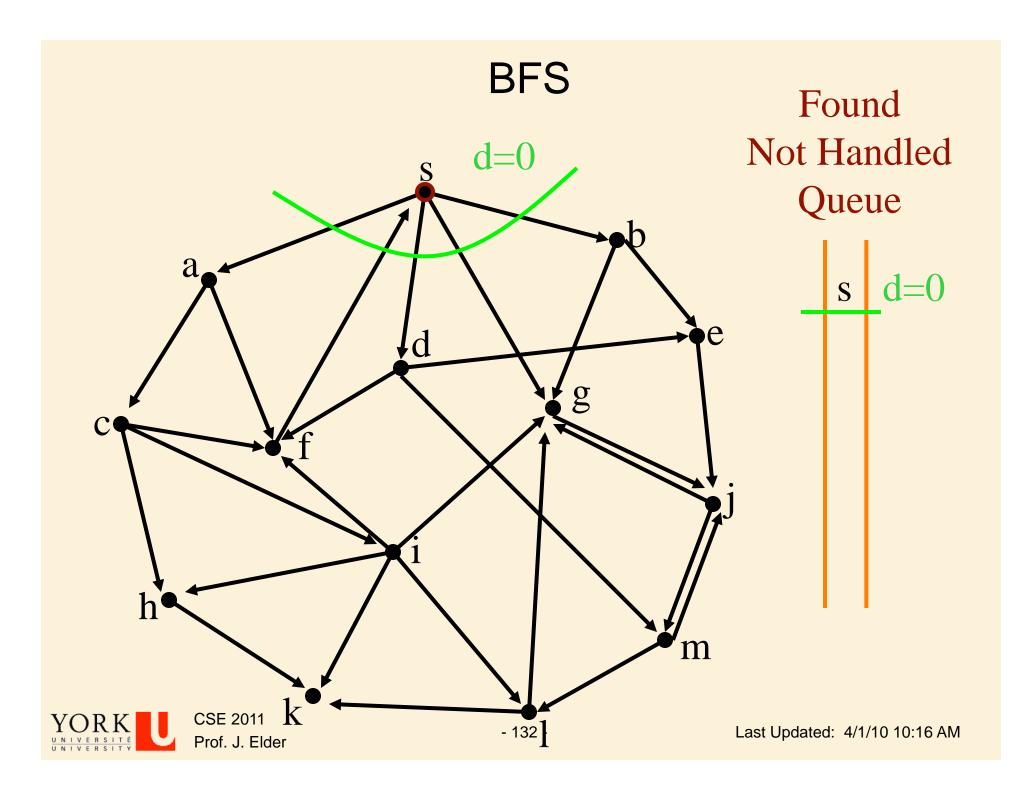
Output:

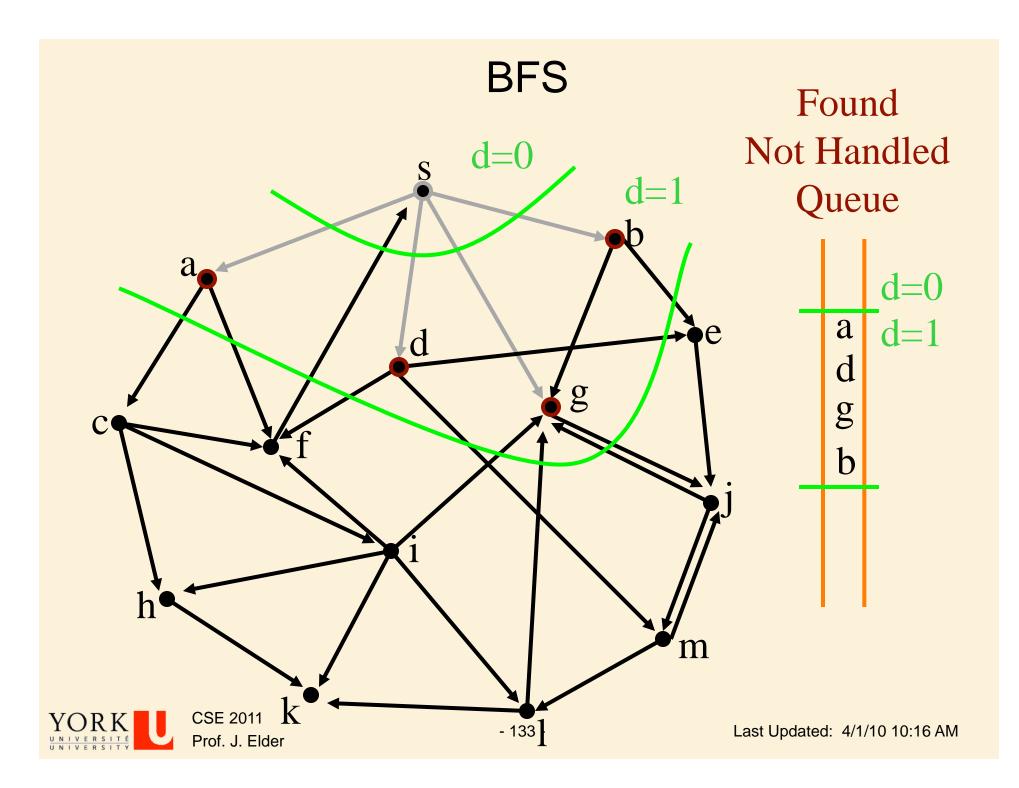
- d[v] = shortest path distance $\delta(s,v)$ from s to v, $\forall v \in V$.
- $\pi[v] = u$ such that (u, v) is last edge on a shortest path from s to v.
- Idea: send out search 'wave' from s.
- Keep track of progress by colouring vertices:
 - Undiscovered vertices are coloured black
 - □ Just discovered vertices (on the wavefront) are coloured red.
 - Previously discovered vertices (behind wavefront) are coloured grey.

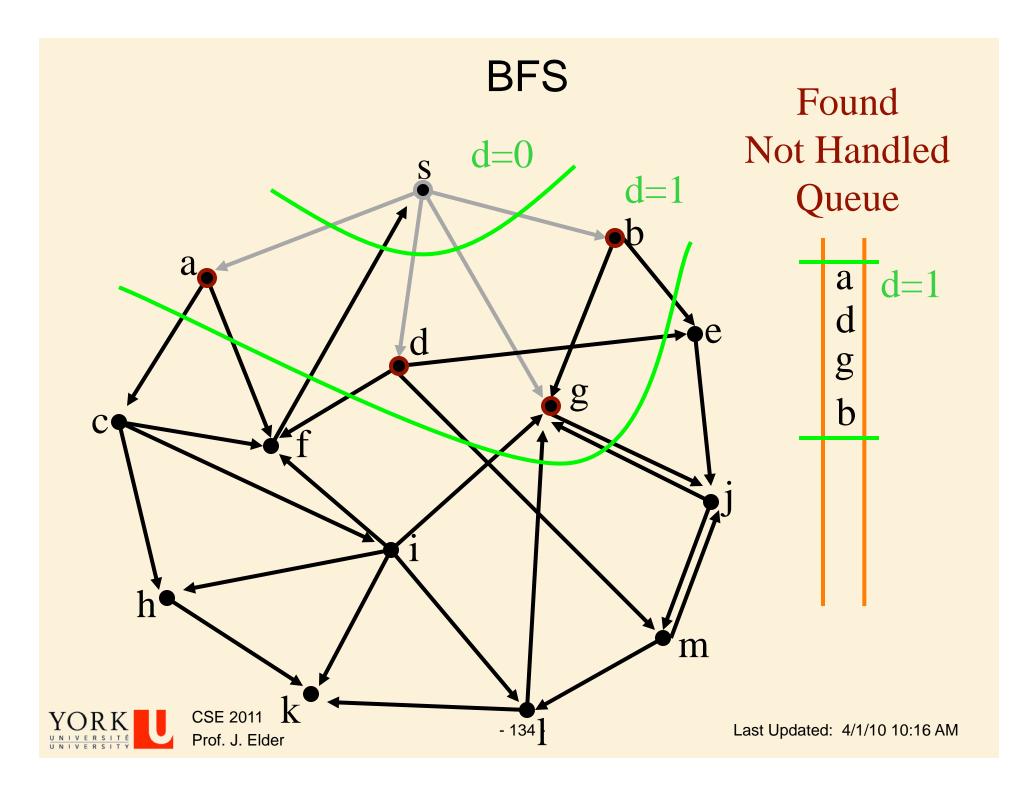
BFS Algorithm with Distances and Predecessors

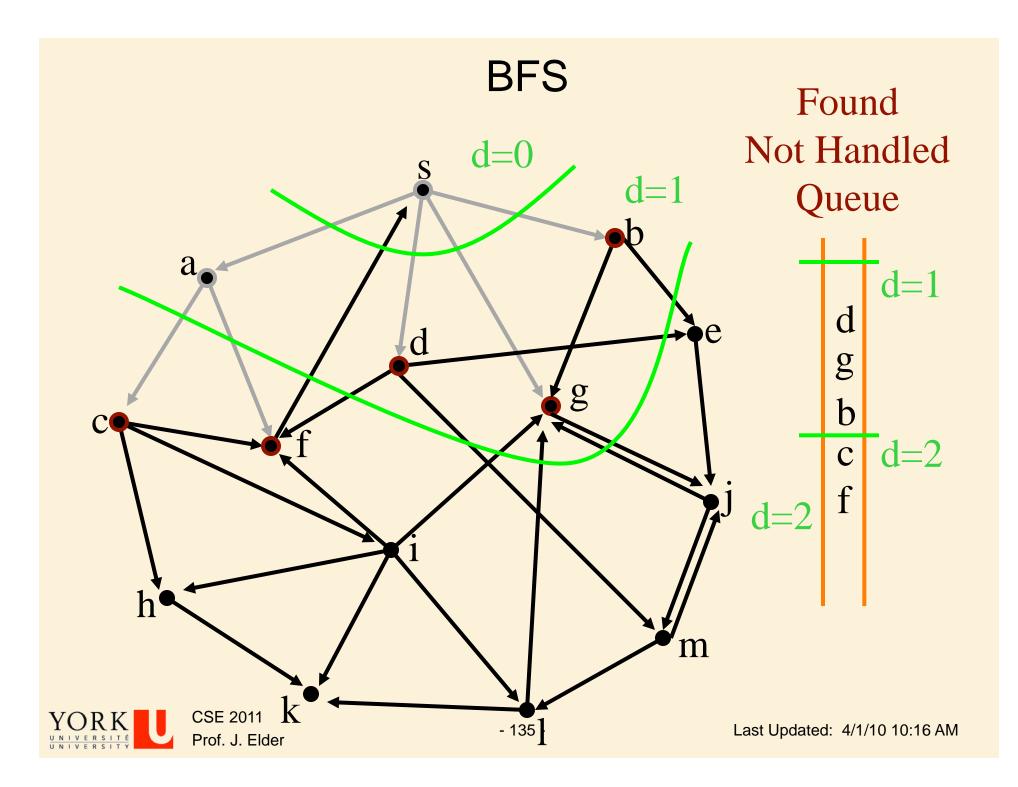
```
BFS(G,s)
  Precondition: G is a graph, s is a vertex in G
  Postcondition: d[u] = shortest distance \delta[u] and
  \pi[u] = predecessor of u on shortest paths from s to each vertex u in G
           for each vertex u \in V[G]
                    d[u] \leftarrow \infty
                    \pi[u] \leftarrow \text{null}
                    color[u] = BLACK //initialize vertex
           colour[s] \leftarrow RED
           d[s] \leftarrow 0
           Q.enqueue(s)
           while \mathbf{Q} \neq \emptyset
                    u \leftarrow Q.dequeue()
                    for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                             if color[v] = BLACK
                                      colour[v] \leftarrow RED
                                      d[v] \leftarrow d[u] + 1
                                      \pi[v] \leftarrow u
                                      Q.enqueue(v)
                    colour[u] \leftarrow GRAY
CSE 2011
```

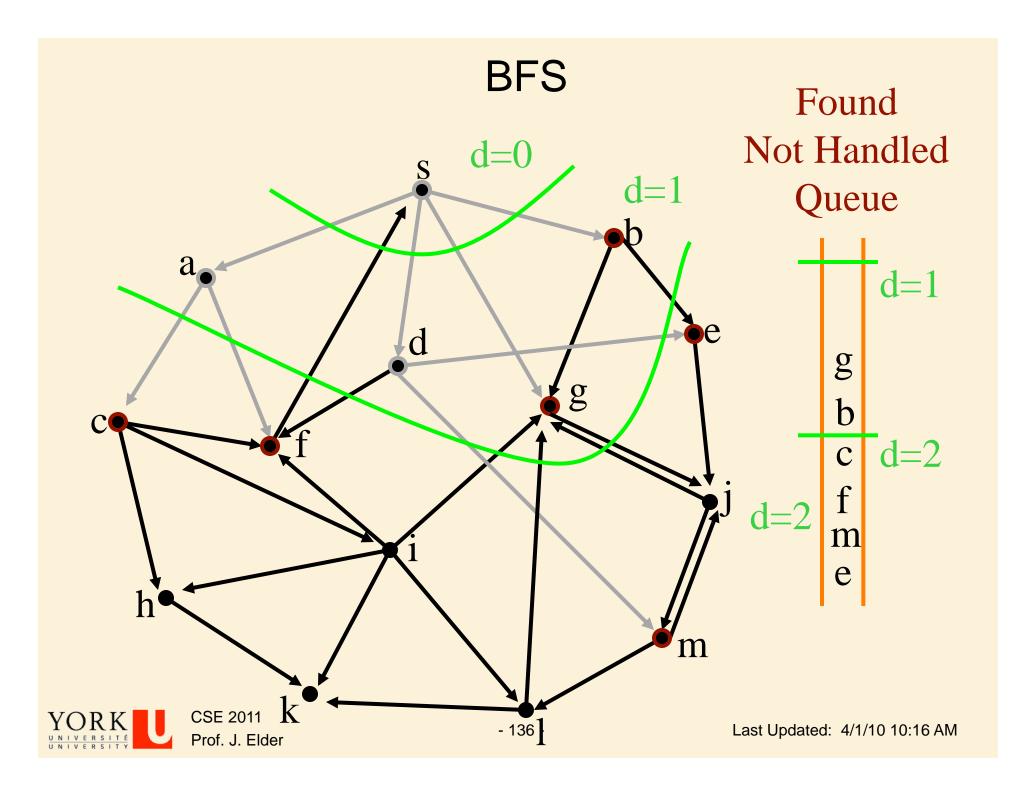



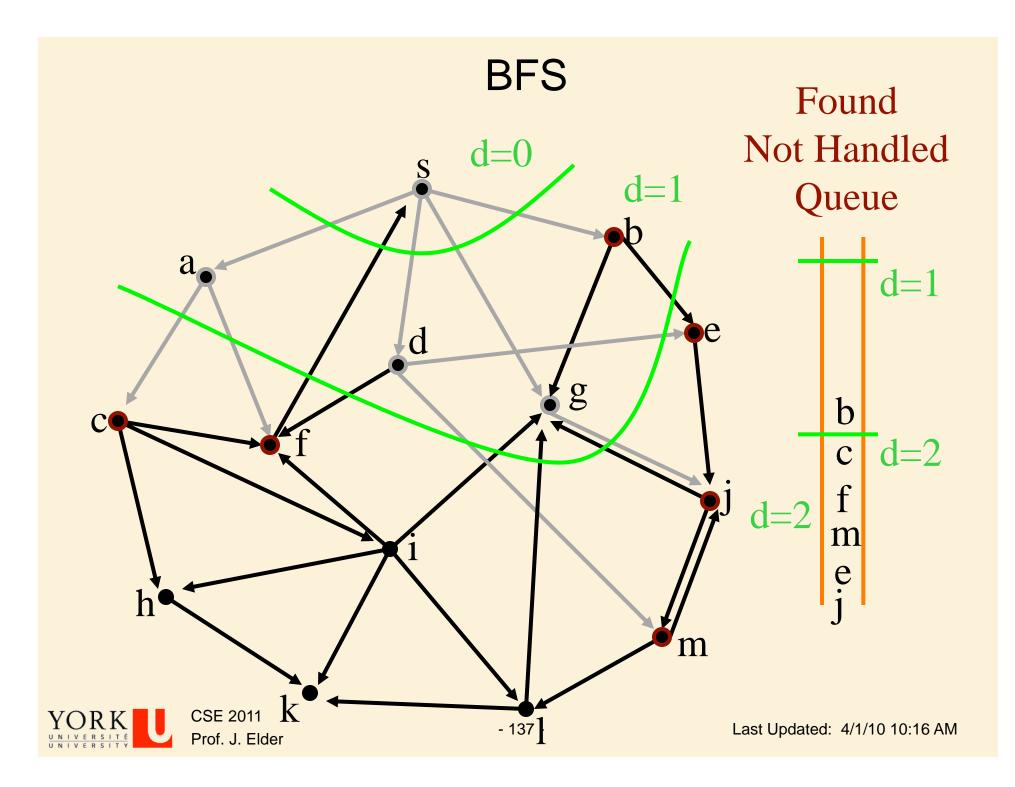


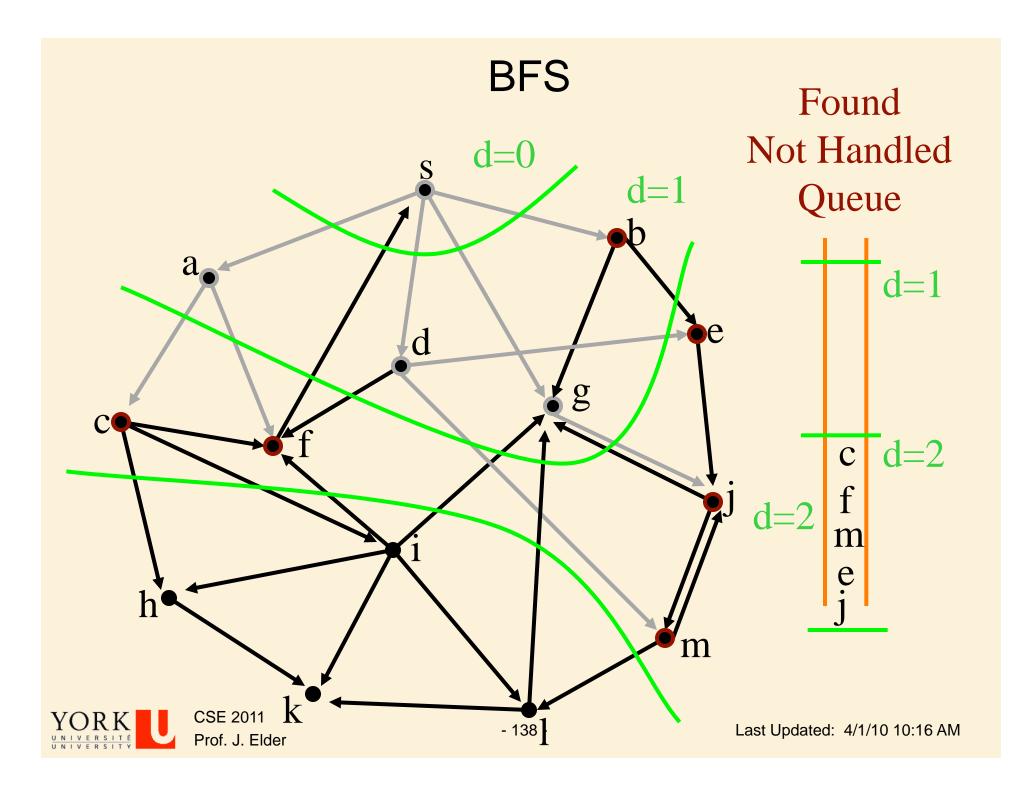


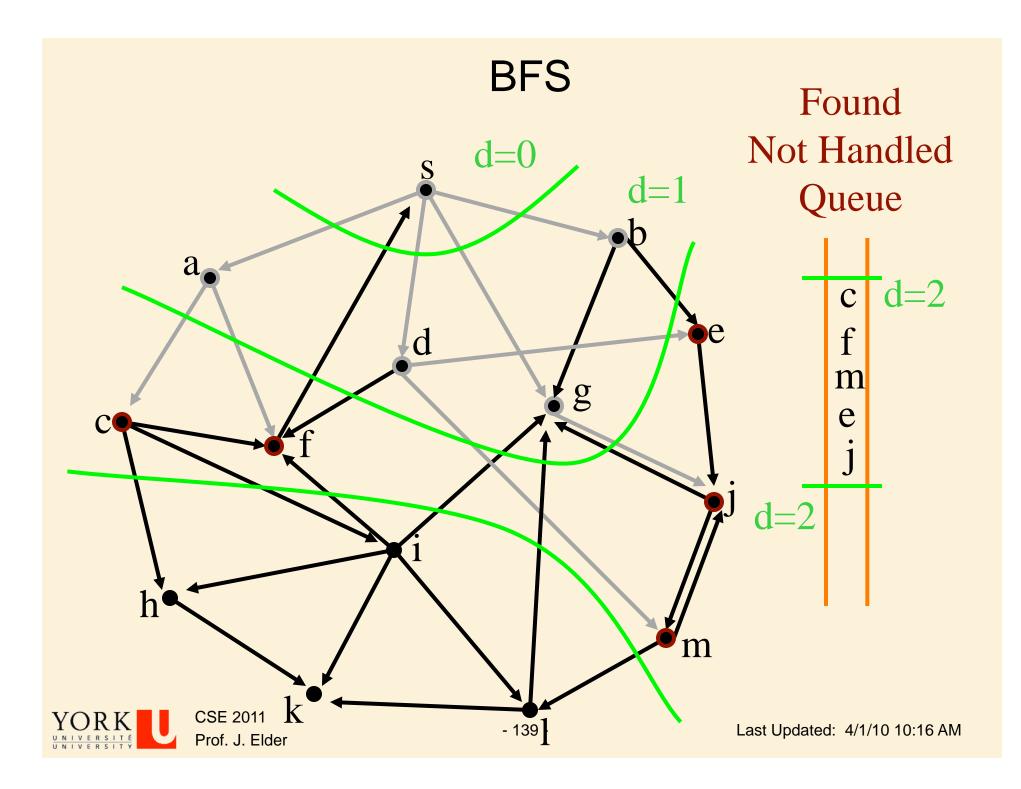


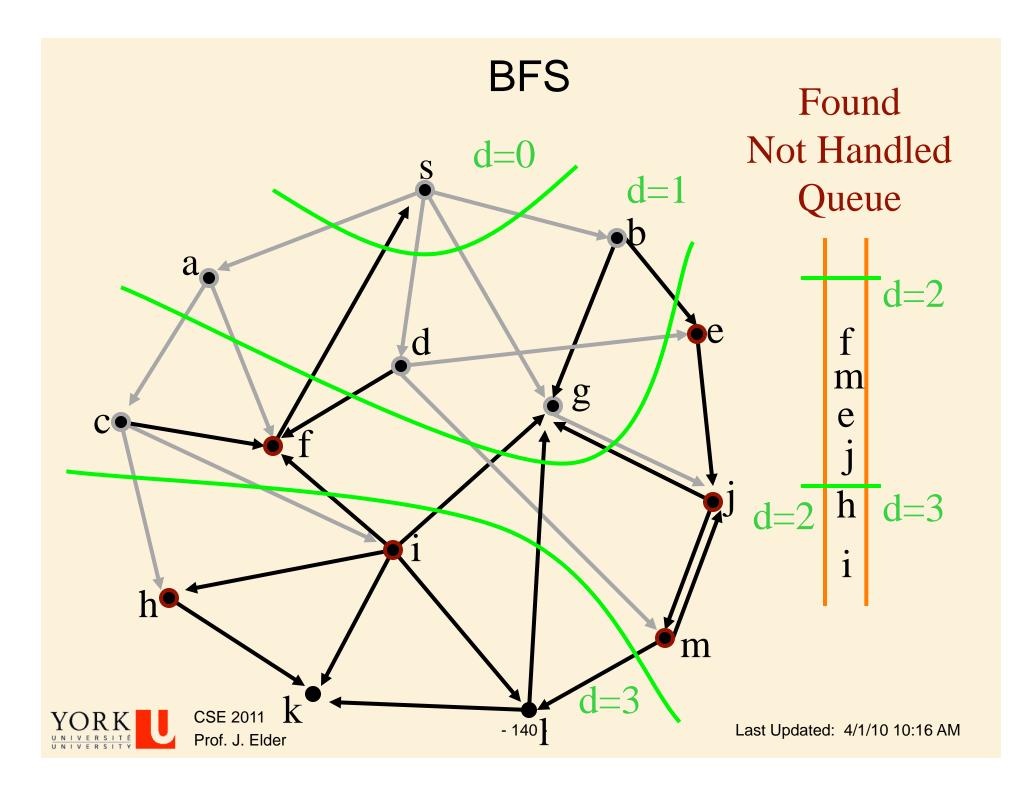


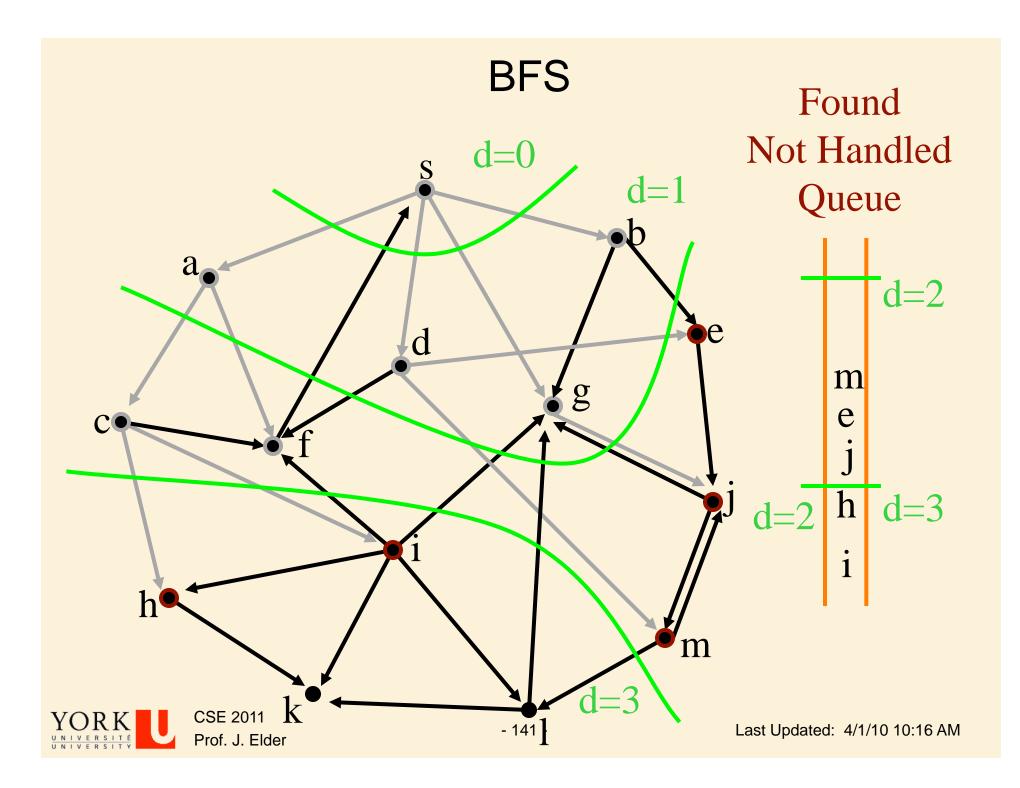


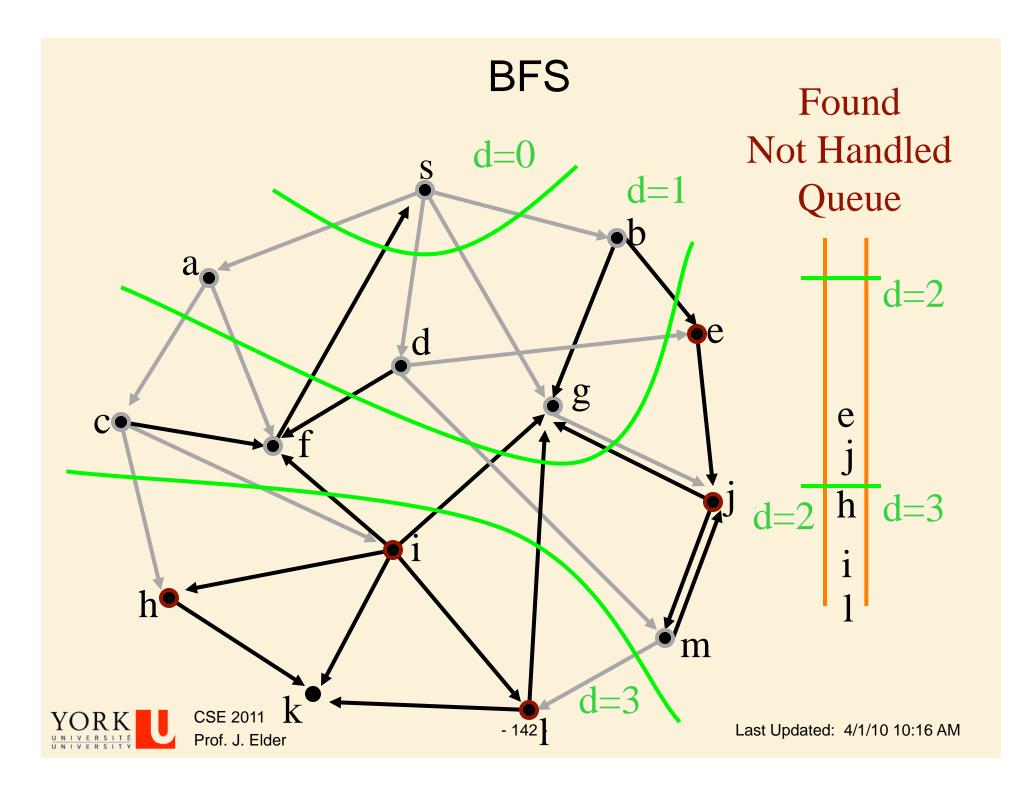


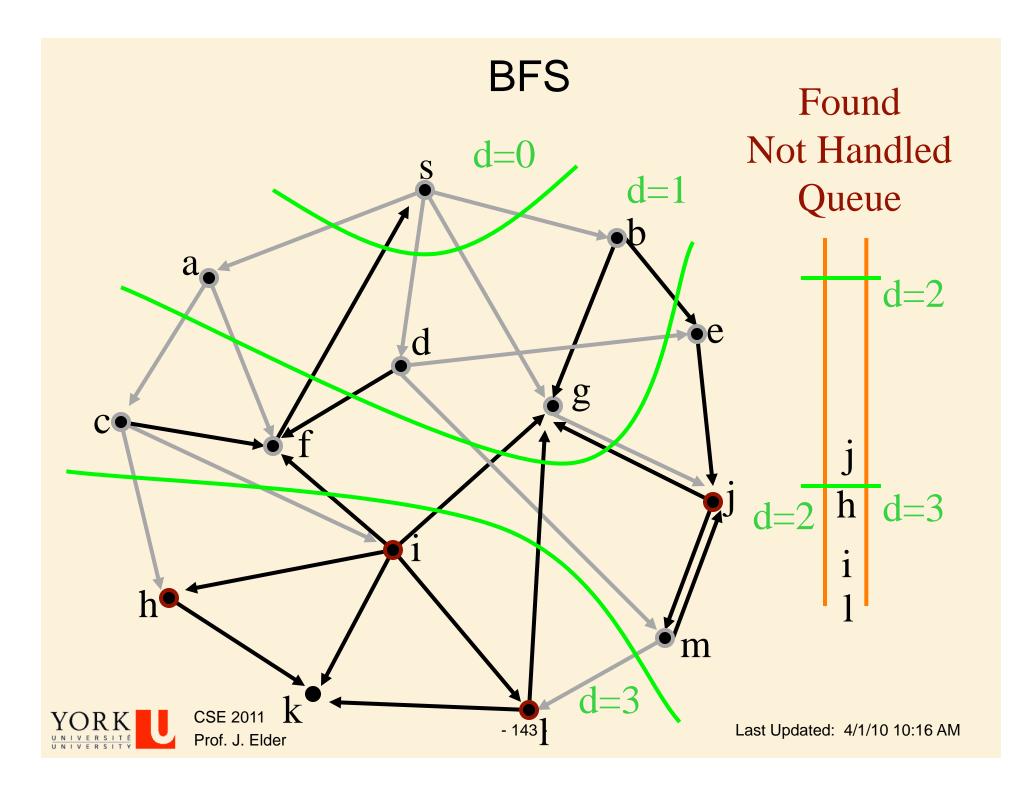


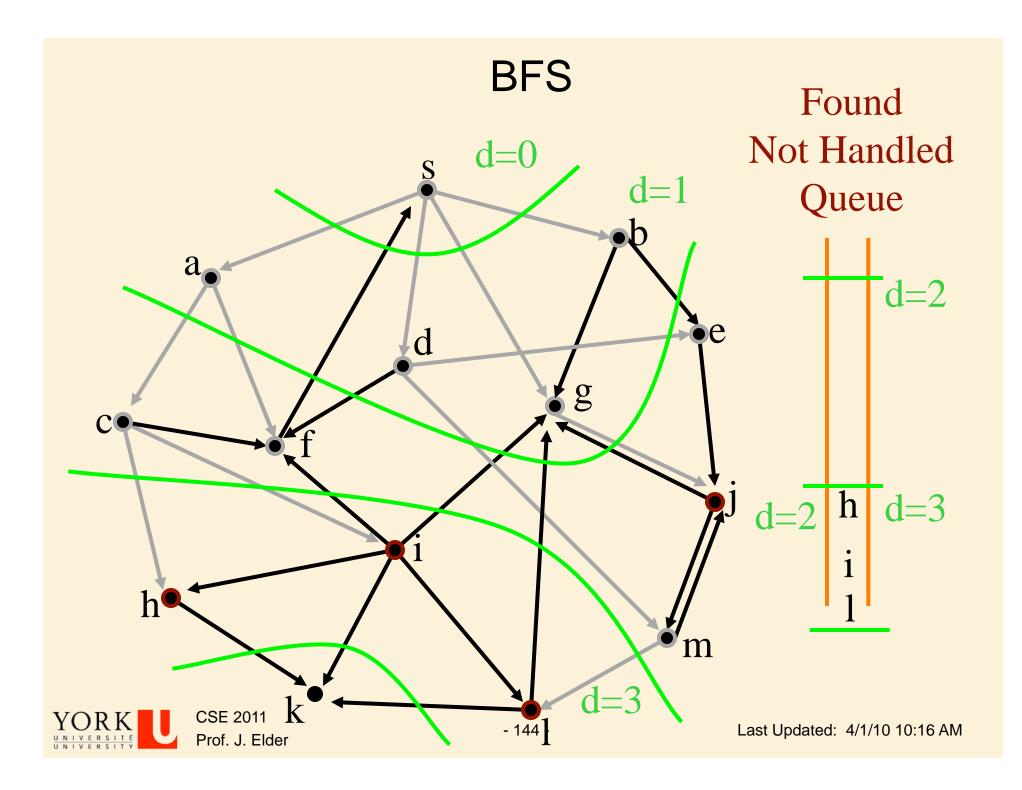


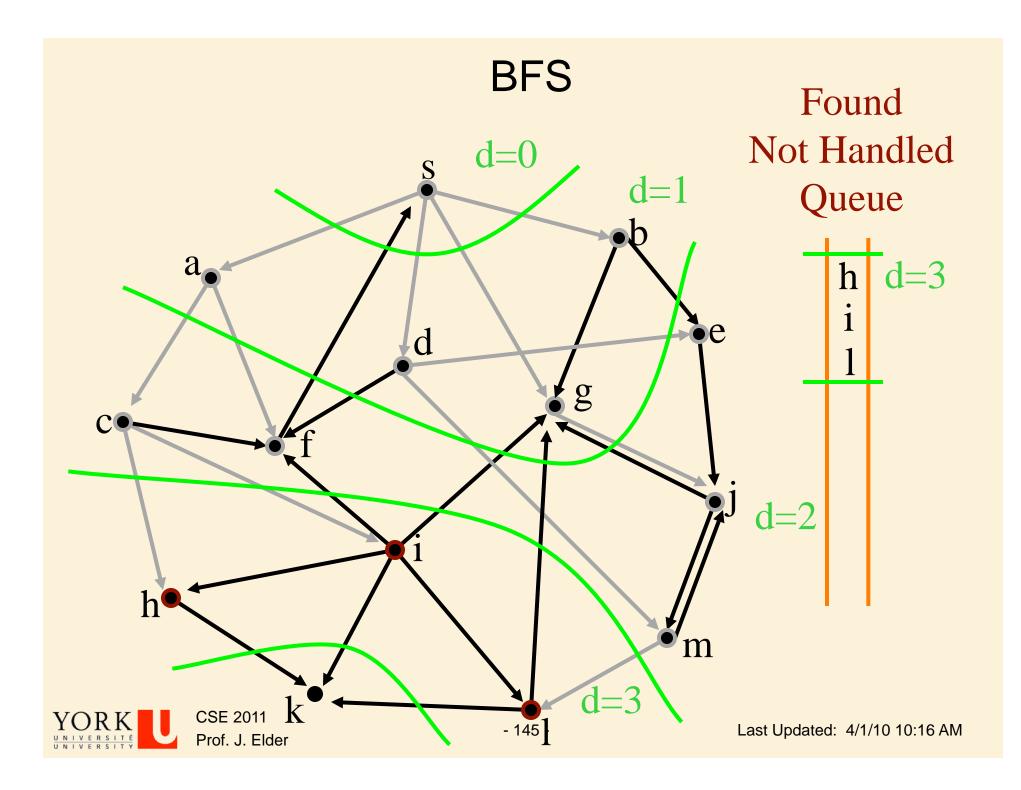


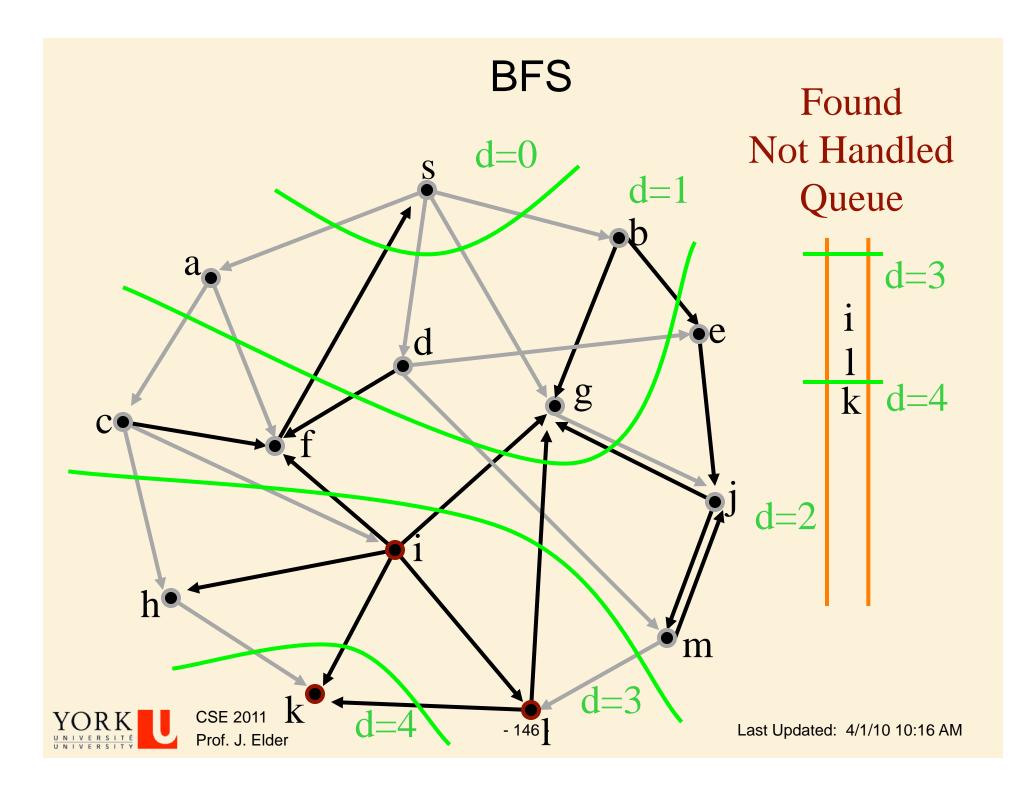


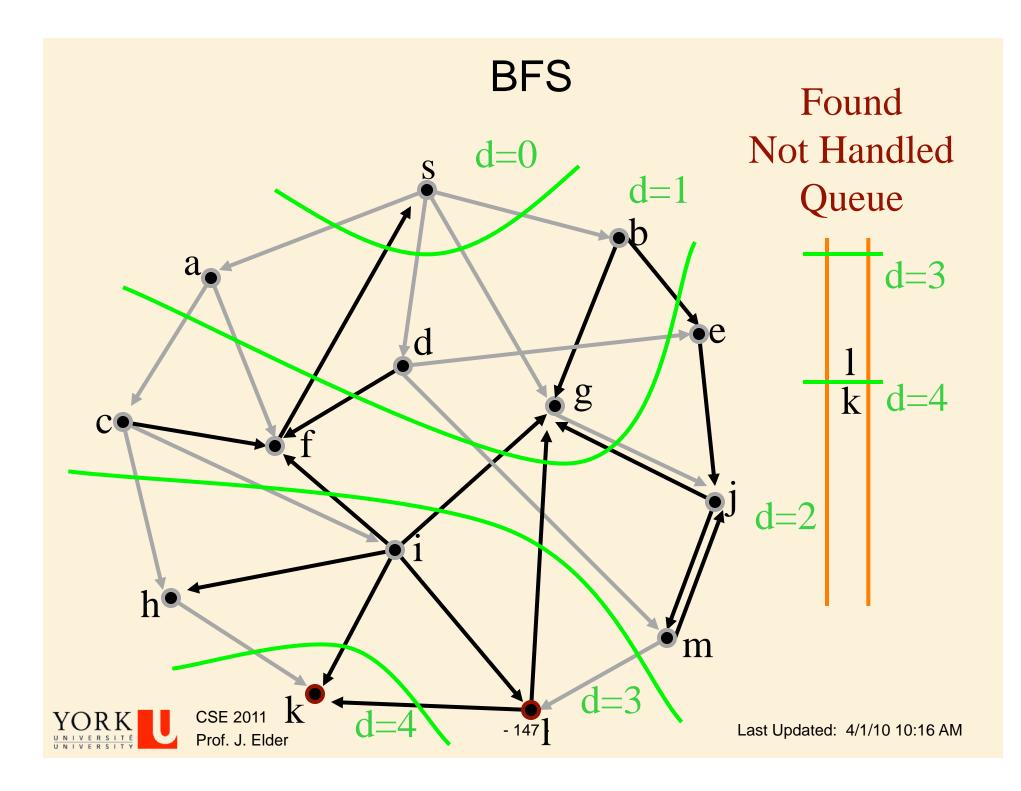


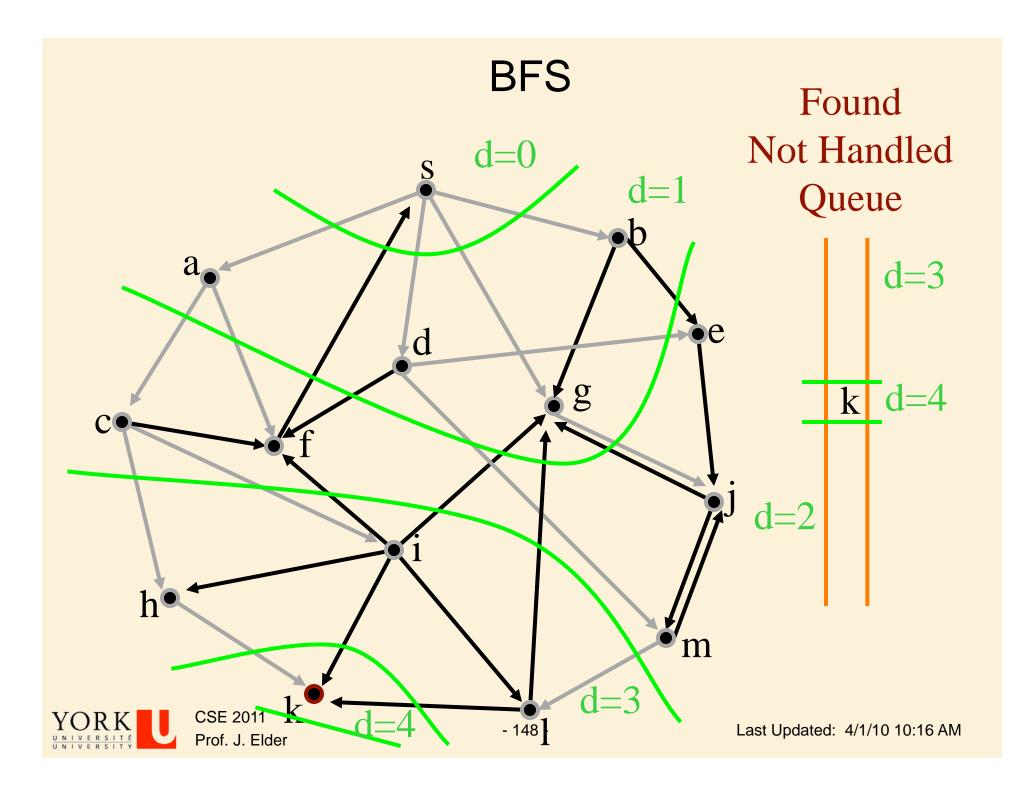


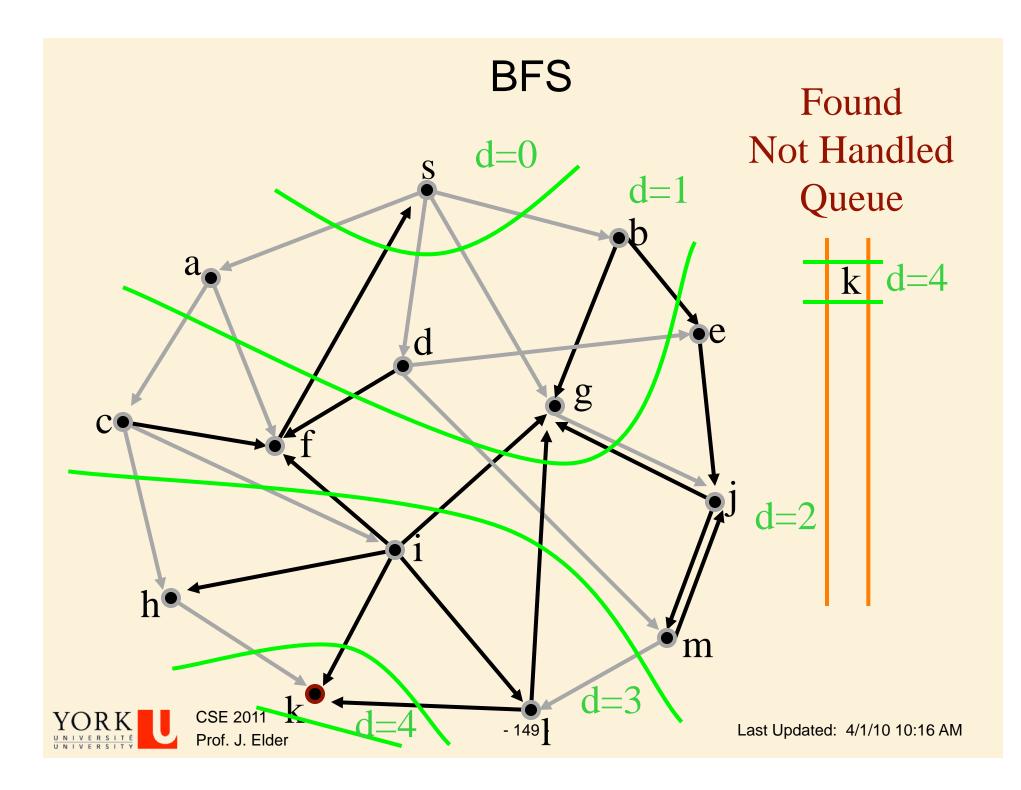


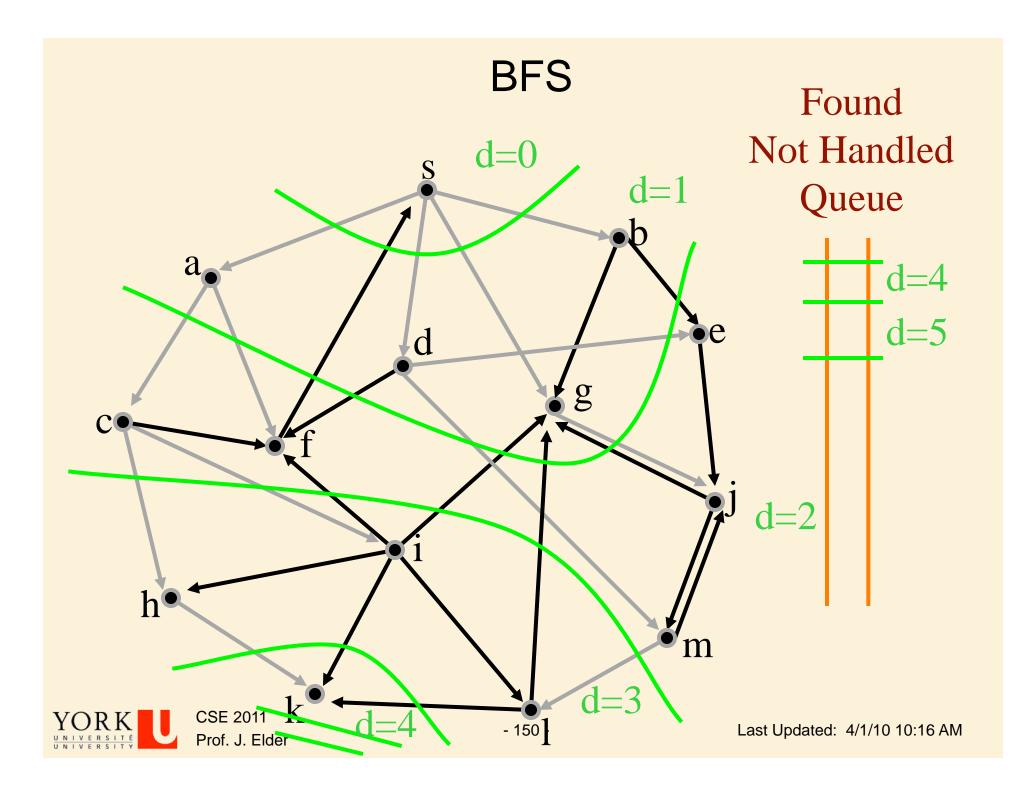












Breadth-First Search Algorithm: Properties

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance $\delta[u]$ and

 π [u] = predecessor of u on shortest paths from s to each vertex u in G

```
for each vertex u \in V[G]
```

```
d[u] \leftarrow \infty
          \pi[u] \leftarrow \text{null}
          color[u] = BLACK //initialize vertex
colour[s] \leftarrow RED
d[s] \leftarrow 0
Q.enqueue(s)
while \mathbf{Q} \neq \emptyset
          u \leftarrow Q.dequeue()
          for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                    if color[v] = BLACK
                              colour[v] \leftarrow RED
                              d[v] \leftarrow d[u] + 1
                              \pi[v] \leftarrow u
                              Q.enqueue(v)
          colour[u] \leftarrow GRAY
          CSE 2011
                                                              - 151 -
          Prof. J. Elder
```

- Q is a FIFO queue.
- Each vertex assigned finite d value at most once.
- Q contains vertices with d values {*i*, ..., *i*, *i*+1, ..., *i*+1}
- d values assigned are monotonically increasing over time.

Breadth-First-Search is Greedy

Vertices are handled:

- □ in order of their discovery (FIFO queue)
- □ Smallest *d* values first

Correctness

Basic Steps:

The shortest path to u has length d

& there is an edge from u to v

There is a path to v with length d+1.

CSE 2011 Prof. J. Elder

Correctness: Intuition

- Vertices are discovered in order of their distance from the source vertex s.
- When we discover v, how do we know there is not a shorter path to v?
 - Because if there was, we would already have discovered it!

Inductive Proof of BFS

Suppose at step *i* that the set of nodes S_i with distance $\delta(v) \le d_i$ have been discovered and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S_i with d values of d_i .

Any node v with $\delta(v) = d_i + 1$ must be adjacent to S_i .

Any node v adjacent to S_i but not in S_i must have $\delta(v) = d_i + 1$.

At step i + 1, all nodes on the queue with d values of d, are dequeued and processed. In so doing, all nodes adjacent to S_i are discovered and assigned d values of $d_i + 1$. Thus after step *i* + 1, all nodes *v* with distance $\delta(v) \leq d_i + 1$ have been discovered and their distance values d[v] have been correctly assigned.

Furthermore, the queue contains only nodes in S_i with d values of $d_i + 1$.

Correctness: Formal Proof

Input: Graph G = (V, E) (directed or undirected) and source vertex $s \in V$.

```
Output:

d[v] = \text{ distance } \delta(v) \text{ from } s \text{ to } v, \forall v \in V.

\pi[v] = u \text{ such that } (u, v) \text{ is last edge on shortest path from } s \text{ to } v.
```

```
Two-step proof:
```

On exit:

- 1. $d[v] \ge \delta(s, v) \forall v \in V$
- 2. $d[v] \ge \delta(s, v) \forall v \in V$

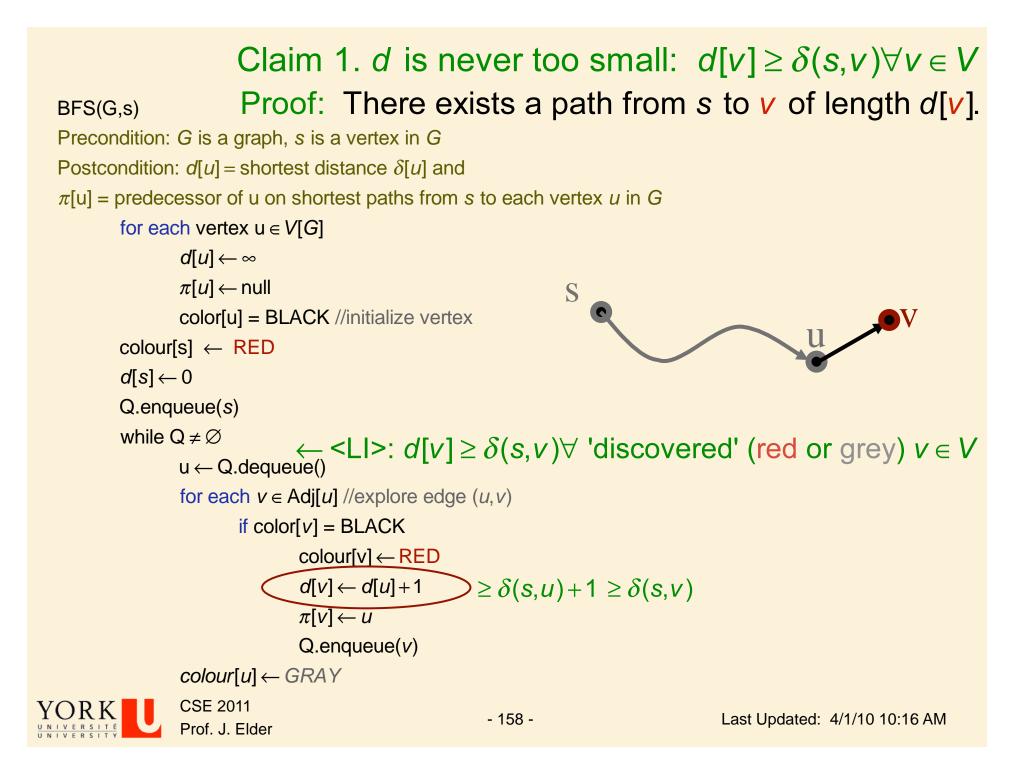
Claim 1. *d* is never too small: $d[v] \ge \delta(s, v) \forall v \in V$ Proof: There exists a path from *s* to *v* of length d[v].

By Induction:

Suppose it is true for all vertices thus far discovered (red and grey). *v* is discovered from some adjacent vertex *u* being handled.

$$\rightarrow d[v] = d[u] + 1 \geq \delta(s, u) + 1 \geq \delta(s, v)$$

since each vertex *v* is assigned a *d* value exactly once, it follows that on exit, $d[v] \ge \delta(s, v) \forall v \in V$.



Claim 2. *d* is never too big: $d[v] \le \delta(s, v) \forall v \in V$

Proof by contradiction:

Suppose one or more vertices receive a d value greater than δ .

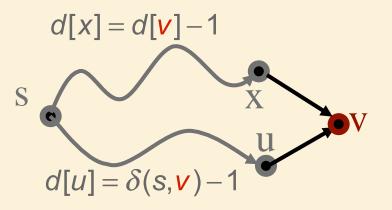
Let **v** be the vertex with minimum $\delta(s, \mathbf{v})$ that receives such a *d* value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let u be v's predecessor on a shortest path from s to v.

Then

 $\delta(s, \mathbf{v}) < d[\mathbf{v}]$ $\rightarrow \delta(s, \mathbf{v}) - 1 < d[\mathbf{v}] - 1$ $\rightarrow d[u] < d[x]$



Recall: vertices are dequeued in increasing order of *d* value.

 \rightarrow u was dequeued before x.

$$\rightarrow d[v] = d[u] + 1 = \delta(s, v)$$
 Contradiction!

CSE 2011 Prof. J. Elder

Correctness

Claim 1. *d* is never too small: $d[v] \ge \delta(s,v) \forall v \in V$ Claim 2. *d* is never too big: $d[v] \le \delta(s,v) \forall v \in V$

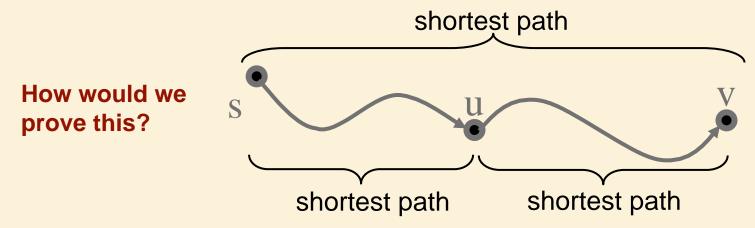
 \Rightarrow *d* is just right: $d[v] = \delta(s, v) \forall v \in V$

Progress? > On every iteration one vertex is processed (turns gray).

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance \delta[u] and
\pi[u] = predecessor of u on shortest paths from s to each vertex u in G
         for each vertex u \in V[G]
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{null}
                  color[u] = BLACK //initialize vertex
         colour[s] \leftarrow RED
         d[s] \leftarrow 0
         Q.enqueue(s)
         while \mathbf{Q} \neq \emptyset
                  u \leftarrow Q.dequeue()
                  for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                           if color[v] = BLACK
                                    colour[v] \leftarrow RED
                                    d[v] \leftarrow d[u] + 1
                                    \pi[v] \leftarrow u
                                    Q.enqueue(v)
                  colour[u] \leftarrow GRAY
                  CSE 2011
                                                                 - 161 -
                  Prof. J. Elder
```

Optimal Substructure Property

> The shortest path problem has the optimal substructure property: Every subpath of a shortest path is a shortest path.



- > The optimal substructure property
 - □ is a hallmark of both greedy and dynamic programming algorithms.
 - allows us to compute both shortest path distance and the shortest paths themselves by storing only one *d* value and one predecessor value per vertex.

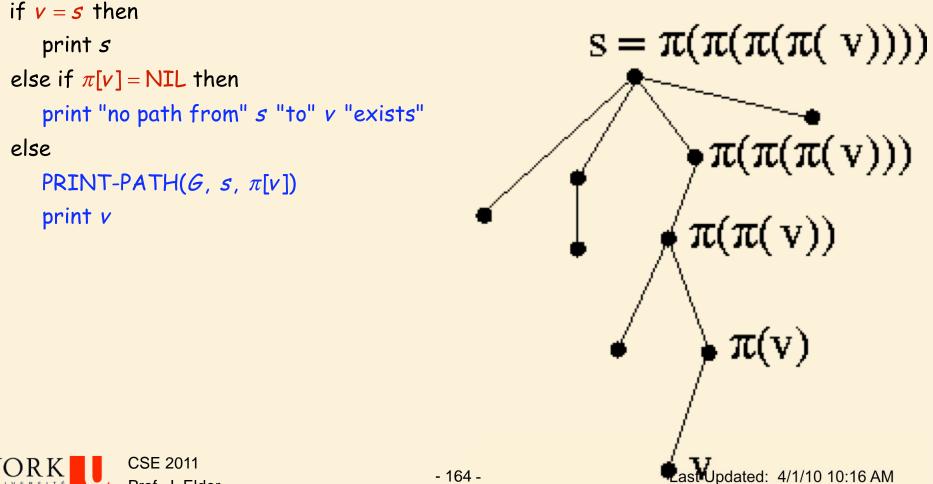
Recovering the Shortest Path For each node v, store predecessor of v in $\pi(v)$. $s = \pi(\pi(\pi(\pi(v))))$ S $\pi(\pi(\pi(\mathbf{v})))$ $\pi(v)$ $\pi(\pi(\mathbf{v}))$ Predecessor of v is $\pi(v) = u$. $\pi(v)$ **CSE 2011** - 163 -Last Updated: 4/1/10 10:16 AM Prof. J. Elder

Recovering the Shortest Path

PRINT-PATH(G, s, v)

Precondition: s and v are vertices of graph G

Postcondition: the vertices on the shortest path from s to v have been printed in order

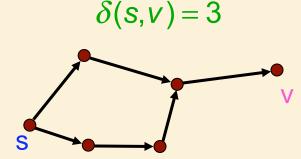


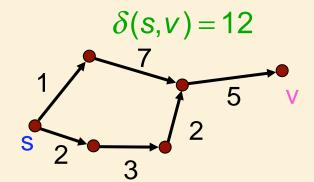
BFS Algorithm without Colours BFS(G,s) Precondition: G is a graph, s is a vertex in GPostcondition: predecessors π [u] and shortest distance d[u] from s to each vertex u in G has been computed for each vertex $u \in V[G]$ $d[u] \leftarrow \infty$ $\pi[u] \leftarrow \text{null}$ $d[s] \leftarrow 0$ Q.enqueue(s) while $\mathbf{Q} \neq \emptyset$ $u \leftarrow Q.dequeue()$ for each $v \in \operatorname{Adj}[u]$ //explore edge (u, v)if $d[v] = \infty$ $d[v] \leftarrow d[u] + 1$ $\pi[v] \leftarrow u$ Q.enqueue(v)

Single-Source (Weighted) Shortest Paths

Shortest Path on Weighted Graphs

- BFS finds the shortest paths from a source node s to every vertex v in the graph.
- Here, the length of a path is simply the number of edges on the path.
- But what if edges have different 'costs'?



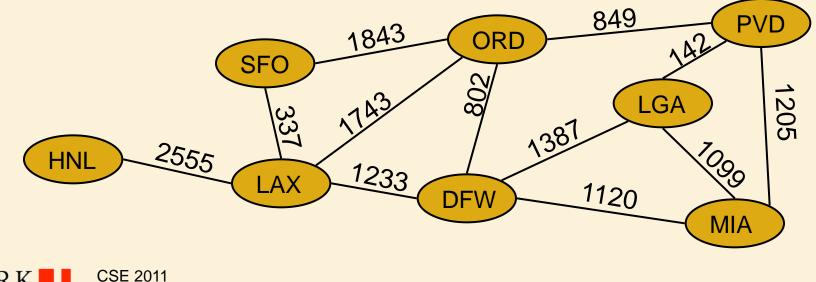


CSE 2011 Prof. J. Elder

Last Updated: 4/1/10 10:16 AM

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- > Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports



Shortest Paths

> Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.

Length of a path is the sum of the weights of its edges.

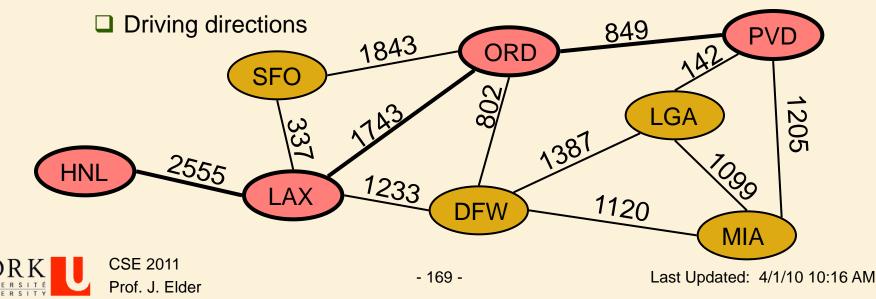
> Example:

Shortest path between Providence and Honolulu

Applications

Internet packet routing

Flight reservations



Shortest Path: Notation

> Input:

Directed Graph G = (V, E)Edge weights $w : E \to \mathbb{R}$

Weight of path
$$p = < v_0, v_1, ..., v_k > = \sum_{i=1}^k w(v_{i-1}, v_i)$$

Shortest-path weight from *u* to *v*:

$$\delta(u,v) = \begin{cases} \min\{w(p): u \to \stackrel{p}{\cdots} \to v\} & \text{if } \exists a \text{ path } u \to \cdots \to v, \\ \infty & \text{otherwise.} \end{cases}$$

Shortest path from u to v is any path p such that $w(p) = \delta(u,v)$.

Prof. J. Elder

Shortest Path Properties

Property 1 (Optimal Substructure):

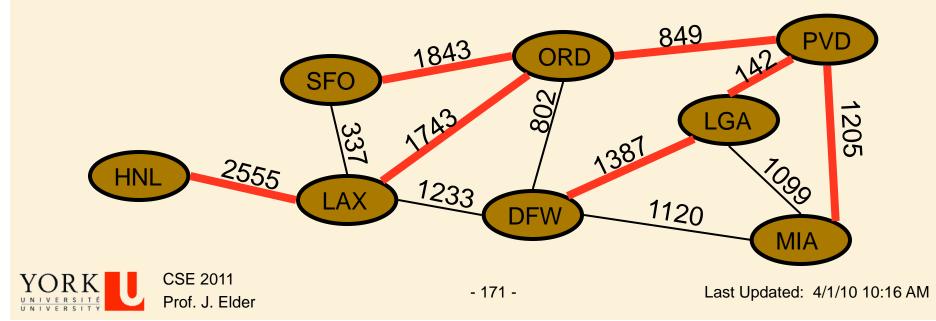
A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):

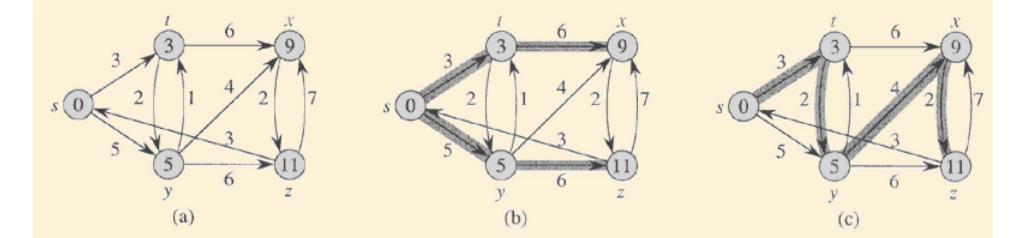
There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence



Shortest path trees are not necessarily unique



Single-source shortest path search induces a search tree rooted at *s*. This tree, and hence the paths themselves, are not necessarily unique.

Optimal substructure: Proof

- Lemma: Any subpath of a shortest path is a shortest path
- Proof: Cut and paste.

Suppose this path p is a shortest path from u to v. $u \xrightarrow{p_{ux}} x \xrightarrow{p_{xy}} y \xrightarrow{p_{yv}} v$

Then
$$\delta(u,v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yv})$$
.

Now suppose there exists a shorter path $x \to \stackrel{p'_{xy}}{\cdots} \to y$.

Then $w(p'_{xy}) < w(p_{xy})$.

Construct p': $u \xrightarrow{p_{ux}} x \xrightarrow{p'_{xy}} y \xrightarrow{p_{yv}} v$

Then $w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yv}) < w(p_{ux}) + w(p_{xy}) + w(p_{yv}) = w(p).$

So p wasn't a shortest path after all!

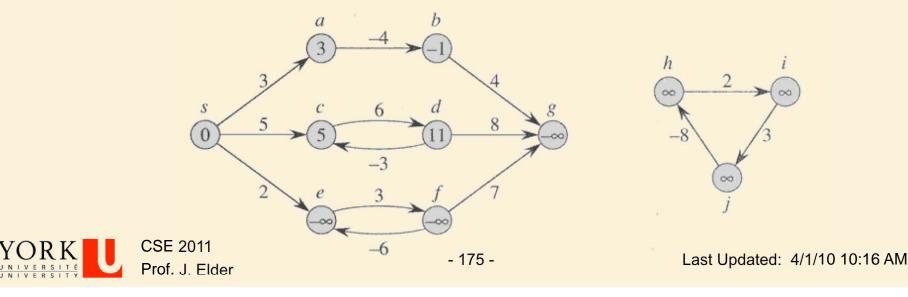
Shortest path variants

- Single-source shortest-paths problem: the shortest path from s to each vertex v.
- Single-destination shortest-paths problem: Find a shortest path to a given *destination* vertex *t* from each vertex v.
- > Single-pair shortest-path problem: Find a shortest path from *u* to *v* for given vertices *u* and *v*.
- > All-pairs shortest-paths problem: Find a shortest path from *u* to *v* for every pair of vertices *u* and *v*.

Prof. J. Elder

Negative-weight edges

- OK, as long as no negative-weight cycles are reachable from the source.
 - If we have a negative-weight cycle, we can just keep going around it, and get w(s, v) = -∞ for all v on the cycle.
 - But OK if the negative-weight cycle is not reachable from the source.
 - Some algorithms work only if there are no negative-weight edges in the graph.



Shortest paths can't contain cycles:

□ Already ruled out negative-weight cycles.

- □ Positive-weight: we can get a shorter path by omitting the cycle.
- \Box Zero-weight: no reason to use them \rightarrow assume that our solutions won't use them.

Shortest-Path Example: Single-Source

Output of a single-source shortest-path algorithm

For each vertex v in V:

 $\Box d[v] = \delta(s, v).$

Initially, d[v]=∞.

♦ Reduce as algorithm progresses.
 But always maintain d[v] ≥ δ(s, v).

 \diamond Call d[v] a shortest-path estimate.

 $\Box \pi[v]$ = predecessor of v on a shortest path from s.

 \Rightarrow If no predecessor, $\pi[v] = NIL$.

$\Rightarrow \pi$ induces a tree — **shortest-path tree**.

CSE 2011 Prof. J. Elder

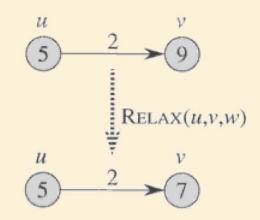
Initialization

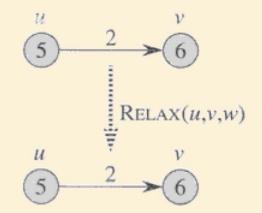
- All shortest-paths algorithms start with the same initialization:
 - INIT-SINGLE-SOURCE(V, s)
 - for each v in V
 - **do** d[v]←∞ π[v] ← NIL
 - $d[s] \leftarrow 0$

Relaxing an edge

Can we improve shortest-path estimate for v by first going to u and then following edge (u,v)?

```
\begin{aligned} \mathsf{RELAX}(\mathsf{u},\,\mathsf{v},\,\mathsf{w}) \\ & \text{ if } \mathsf{d}[\mathsf{v}] > \mathsf{d}[\mathsf{u}] + \mathsf{w}(\mathsf{u},\,\mathsf{v}) \text{ then} \\ & \mathsf{d}[\mathsf{v}] \leftarrow \mathsf{d}[\mathsf{u}] + \mathsf{w}(\mathsf{u},\,\mathsf{v}) \\ & \pi[\mathsf{v}] \leftarrow \mathsf{u} \end{aligned}
```





CSE 2011 Prof. J. Elder

General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

2. Relax Edges

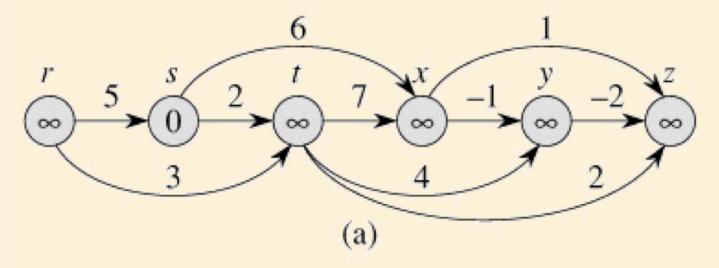
Algorithms differ in the order in which edges are taken and how many times each edge is relaxed.

Example 1. Single-Source Shortest Path on a Directed Acyclic Graph

- Basic Idea: topologically sort nodes and relax in linear order.
- Efficient, since δ[u] (shortest distance to u) has already been computed when edge (u,v) is relaxed.
- Thus we only relax each edge once, and never have to backtrack.

Example: Single-source shortest paths in a directed acyclic graph (DAG)

- Since graph is a DAG, we are guaranteed no negative-weight cycles.
- > Thus algorithm can handle negative edges



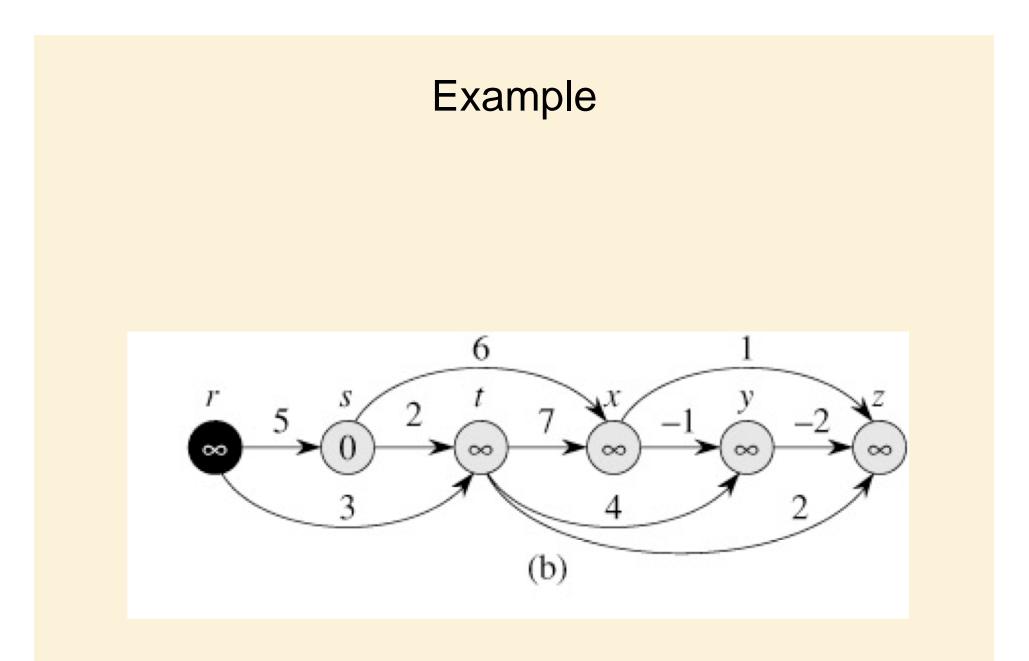
Algorithm

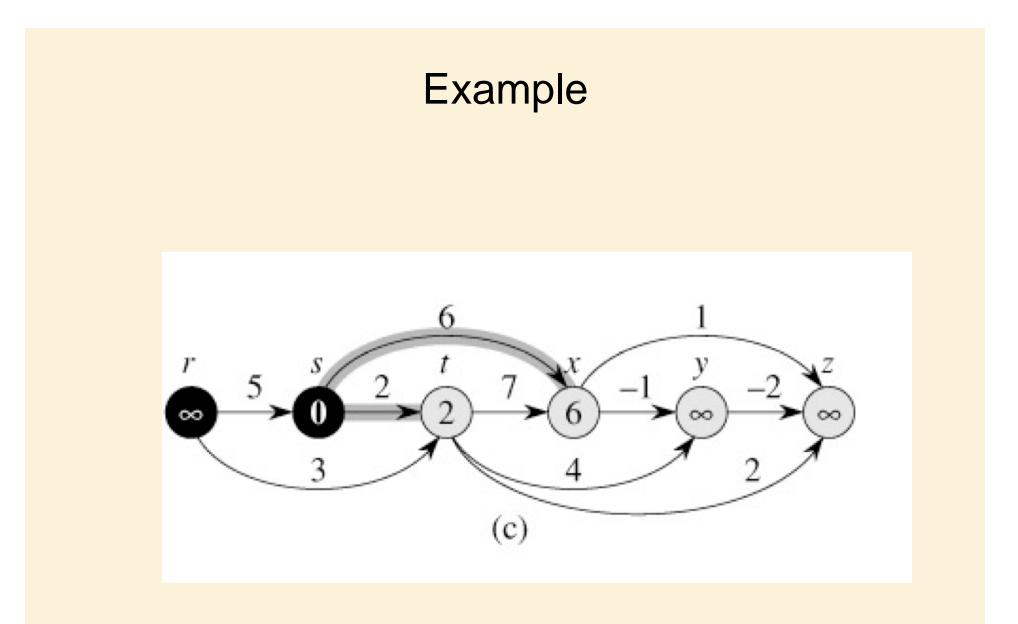
DAG-SHORTEST-PATHS (G, w, s)

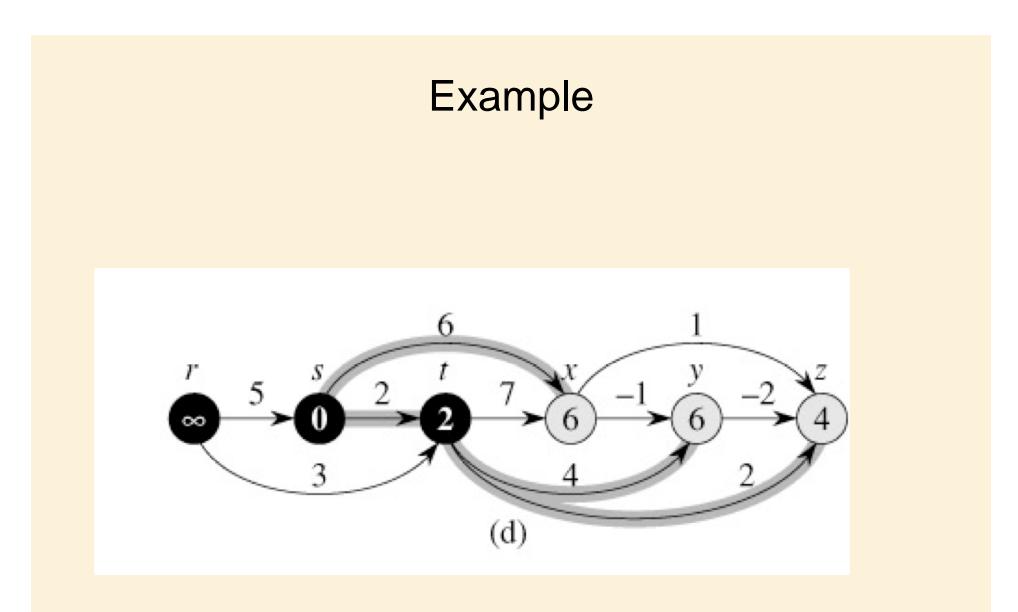
- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex *u*, taken in topologically sorted order
- 4 **do for** each vertex $v \in Adj[u]$
 - **do** RELAX(u, v, w)

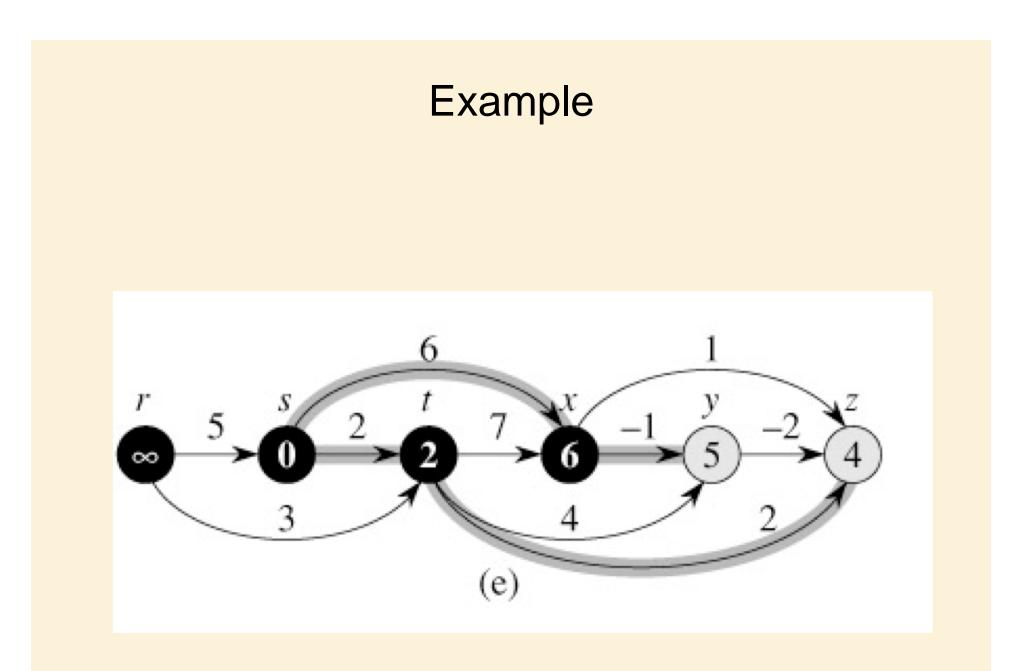
Time: $\Theta(V + E)$

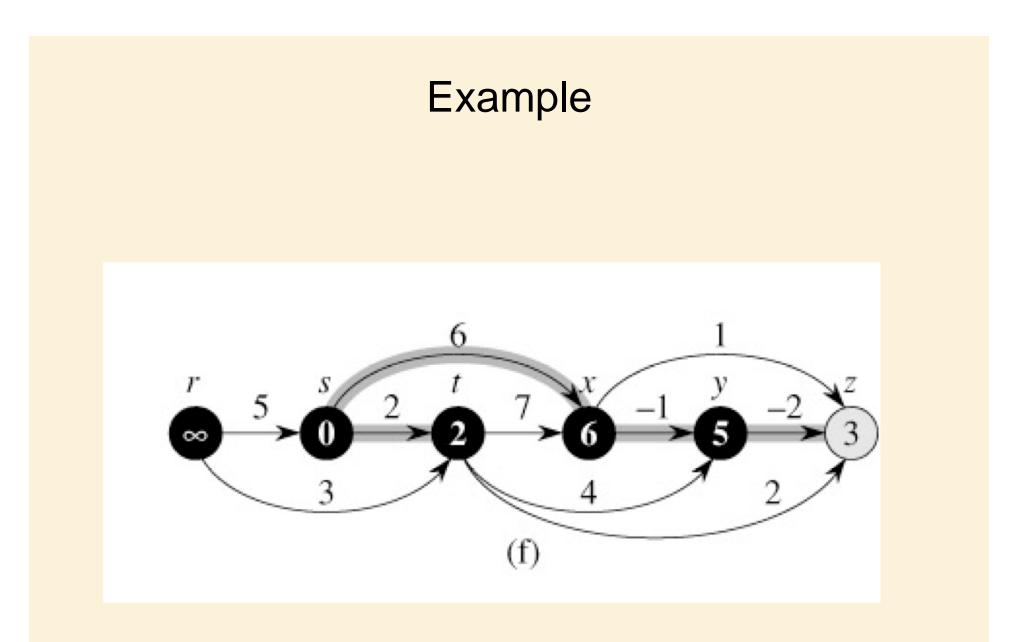
5

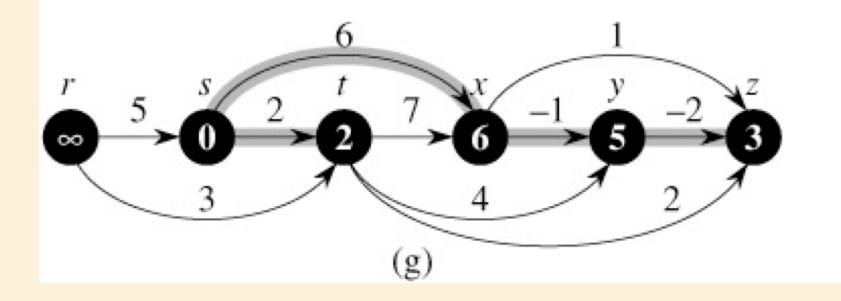












Correctness: Path relaxation property

Let $p = \langle v_0, v_1, \ldots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, in order, (v_0, v_1) , (v_1, v_2) , \ldots , (v_{k-1}, v_k) , even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$.

- 191 -

Correctness of DAG Shortest Path Algorithm

Because we process vertices in topologically sorted order, edges of any path are relaxed in order of appearance in the path.

 $\Box \rightarrow$ Edges on any shortest path are relaxed in order.

 $\Box \rightarrow$ By path-relaxation property, correct.

Example 2. Single-Source Shortest Path on a General Graph (May Contain Cycles)

This is fundamentally harder, because the first paths we discover may not be the shortest (not monotonic).

Dijkstra's algorithm (E. Dijkstra, 1959)

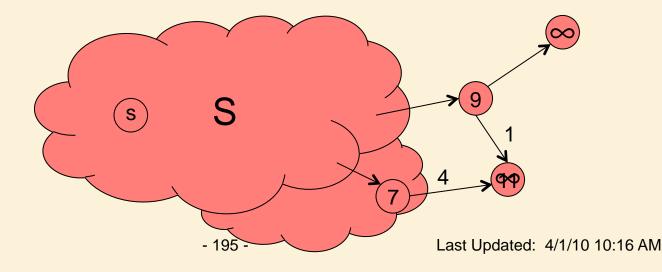
- Applies to general, weighted, directed or undirected graph (may contain cycles).
- But weights must be non-negative. (But they can be 0!)
- Essentially a weighted version of BFS.
 Instead of a FIFO queue, uses a priority queue.
 Keys are shortest-path weights (d[v]).
- Maintain 2 sets of vertices:
 - S = vertices whose final shortest-path weights are determined.

Edsger Dijkstra

 \Box Q = priority queue = V-S.

Dijkstra's Algorithm: Operation

- We grow a "cloud" S of vertices, beginning with s and eventually covering all the vertices
- > We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud S and its adjacent vertices
- > At each step
 - □ We add to the cloud S the vertex u outside the cloud with the smallest distance label, d(u)
 - \Box We update the labels of the vertices adjacent to u



Dijkstra's algorithm

DIJKSTRA(G, w, s)1 INITIALIZE-SINGLE-SOURCE(G, s)2 $S \leftarrow \emptyset$ 3 $Q \leftarrow V[G]$ 4 while $Q \neq \emptyset$ 5 do $u \leftarrow \text{EXTRACT-MIN}(Q)$ 6 $S \leftarrow S \cup \{u\}$ 7 for each vertex $v \in Adj[u]$ 8 do RELAX(u, v, w)

 Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" vertex in V – S to add to S.

Dijkstra's algorithm: Analysis

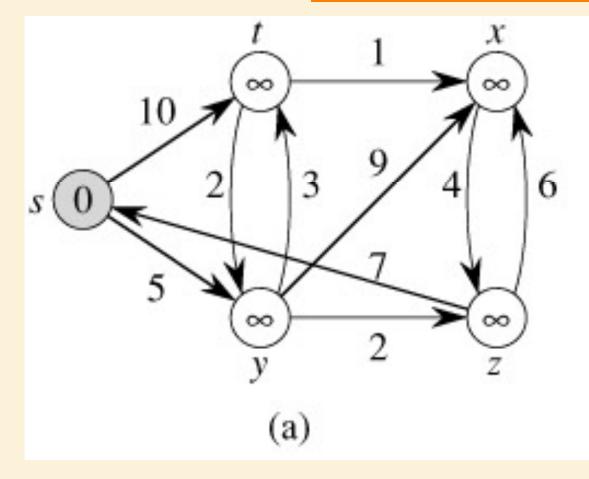
- Analysis:
 - Using minheap, queue operations takes O(logV) time

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s) O(V)
1
2 \quad S \leftarrow \emptyset
3 Q \leftarrow V[G]
4
   while Q \neq \emptyset
5
          do u \leftarrow \text{EXTRACT-MIN}(Q) O(\log V) \times O(V) iterations
6
              S \leftarrow S \cup \{u\}
7
              for each vertex v \in Adj[u]
8
                  do RELAX(u, v, w)
                                                O(\log V) \times O(E) iterations
```

\rightarrow Running Time is $O(E \log V)$

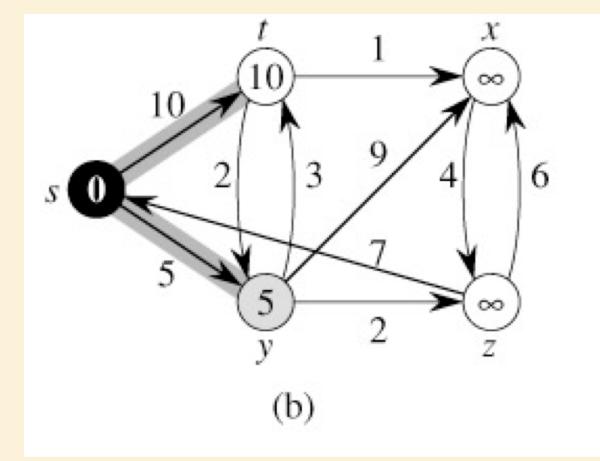
Example

White \Leftrightarrow Vertex $\in Q = V - S$ Grey \Leftrightarrow Vertex = min(Q) Black \Leftrightarrow Vertex $\in S$, Off Queue

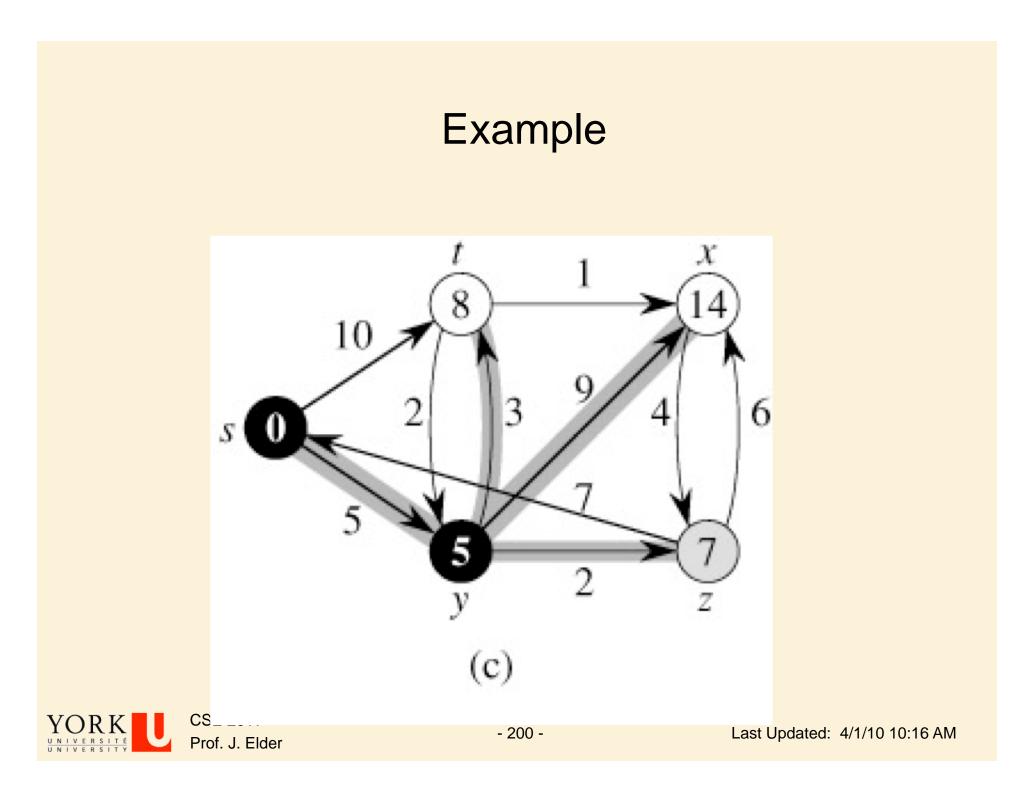


Key:

Example

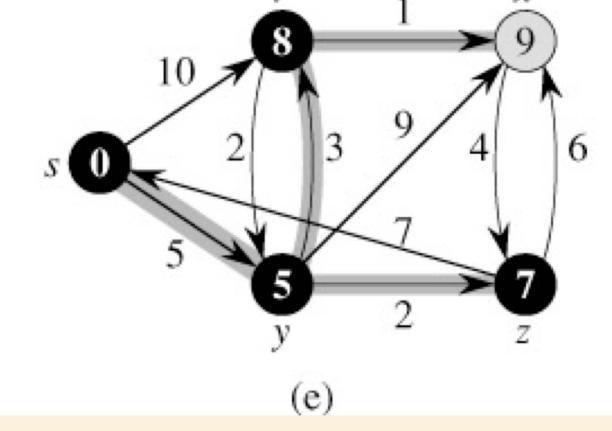


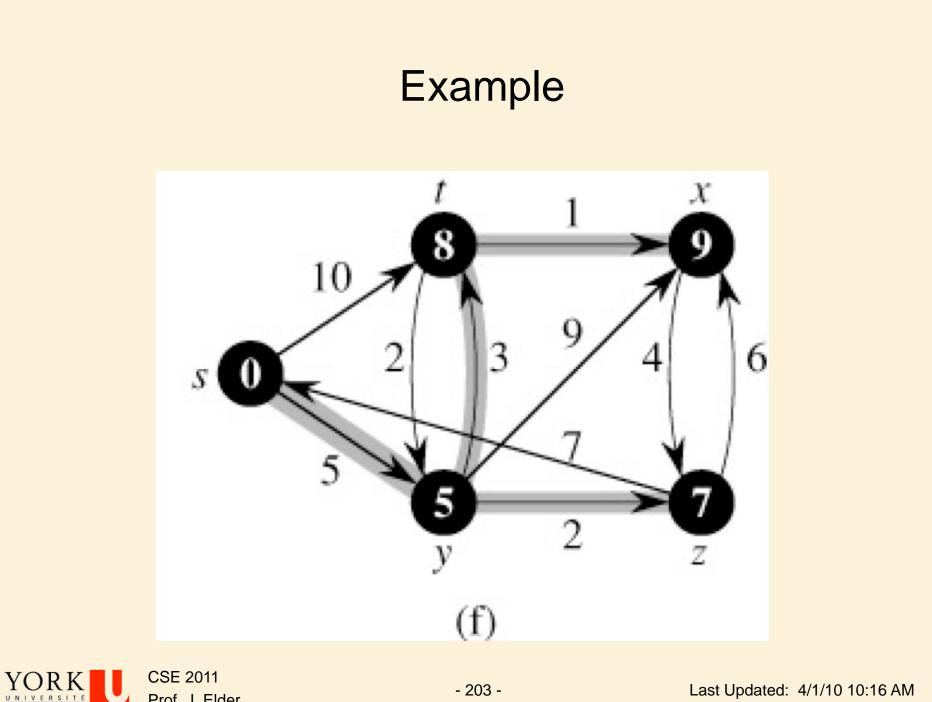
CSE 2011 Prof. J. Elder



Example х 8 10 9 6 3 S 5 y Ζ (d)

Example $1 \frac{x}{9}$

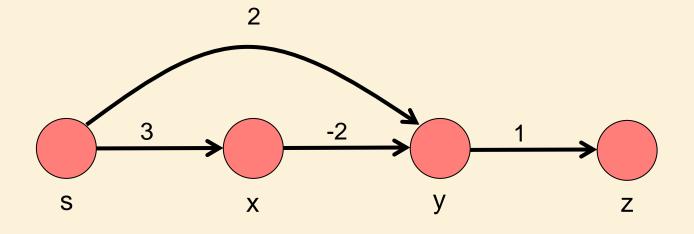




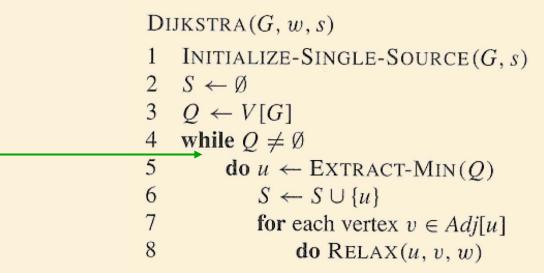
CSE 2011 Prof. J. Elder

UNIVERSI

Djikstra's Algorithm Cannot Handle Negative Edges



Correctness of Dijkstra's algorithm



Loop invariant: $d[v] = \delta(s, v)$ for all v in S.

□ Initialization: Initially, S is empty, so trivially true.

□ Termination: At end, Q is empty \rightarrow S = V \rightarrow d[v] = δ (s, v) for all v in V.

Maintenance:

Need to show that

* d[u] = δ (s, u) when u is added to S in each iteration.

In d[u] does not change once u is added to S.

CSE 2011 Prof. J. Elder

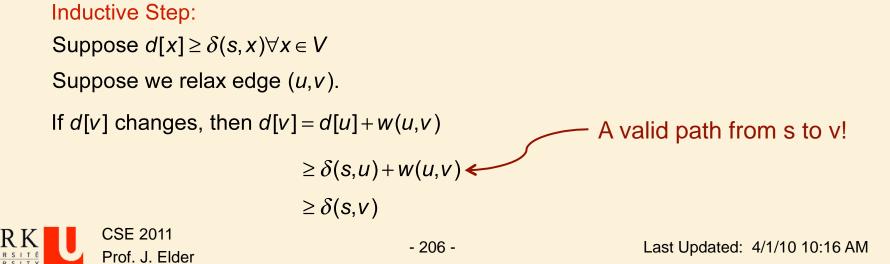
Correctness of Dijkstra's Algorithm: Upper Bound Property

Upper Bound Property:

- 1. $d[v] \ge \delta(s, v) \forall v \in V$
- 2. Once $d[v] = \delta(s, v)$, it doesn't change
- Proof:

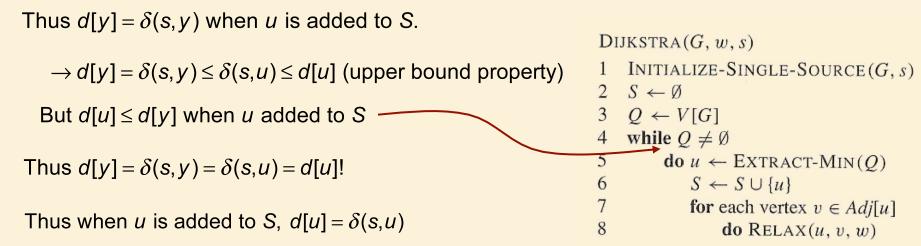
By induction.

Base Case: $d[v] \ge \delta(s, v) \forall v \in V$ immediately after initialization, since $d[s] = 0 = \delta(s, s)$ $d[v] = \infty \forall v \neq s$



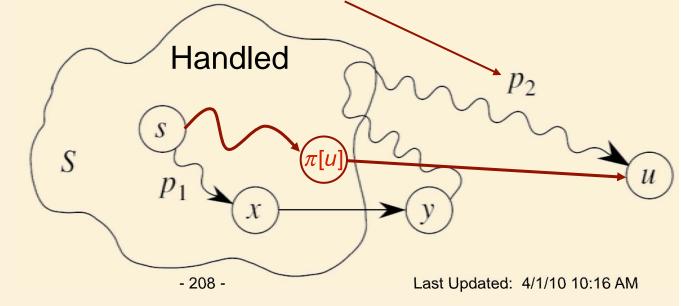
Correctness of Dijkstra's Algorithm Claim: When u is added to S, $d[u] = \delta(s, u)$ Proof by Contradiction: Let *u* be the first vertex added to S such that $d[u] \neq \delta(s, u)$ when *u* is added. Let y be first vertex in V - S on shortest path to u Let x be the predecessor of y on the shortest path to u **Optimal substructure** Claim: $d[y] = \delta(s, y)$ when u is added to S. property! Proof: $d[x] = \delta(s, x)$, since $x \in S$. (x, y) was relaxed when x was added to $S \rightarrow d[y] = \delta(s, x) + w(x, y) = \delta(s, y)$ Handled S **CSE 2011** - 207 -Last Updated: 4/1/10 10:16 AM Prof. J. Elder

Correctness of Dijkstra's Algorithm



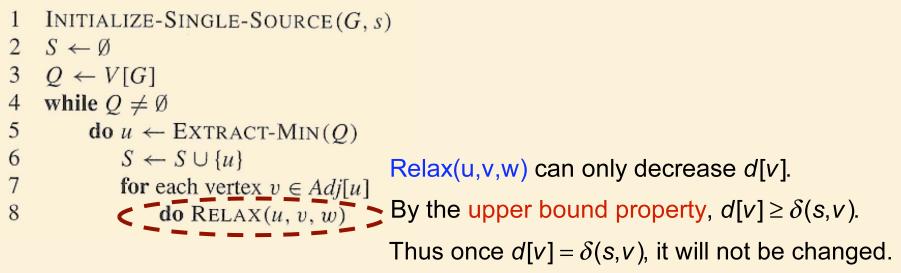
Consequences:

There is a shortest path to *u* such that the predecessor of $u \ \pi[u] \in S$ when *u* is added to *S*. The path through *y* can only be a shortest path if $w[p_2] = 0$.



Correctness of Dijkstra's algorithm

DIJKSTRA(G, w, s)



> **Loop invariant:** $d[v] = \delta(s, v)$ for all v in S.

Maintenance:

